4.7 Article

Nitric oxide amplifies cadmium binding in root cell wall of a high cadmium-accumulating rice (Oryza sativa L.) line by promoting hemicellulose synthesis and pectin demethylesterification

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 234, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113404

Keywords

Cell wall; Polysaccharide synthesis; Pectin demethylesterification; Cd binding

Funding

  1. National Key Research and Development Programs [2018YFC1802605, 2018YFC1802606]

Ask authors/readers for more resources

This study reveals how NO regulates plant response to Cd stress in rice by modulating cell wall polysaccharides modification. Exogenous NO promotes pectin demethylesterification and increases hemicellulose accumulation, leading to more Cd binding in the root cell wall of rice.
Nitric oxide (NO) is tightly associated with plant response against cadmium (Cd) stress in rice since NO impacts Cd accumulation via modulating cell wall components. In the present study, we investigated that whether and how NO regulates Cd accumulation in root in two rice lines with different Cd accumulation ability. The variation of polysaccharides in root cell wall (RCW) of a high Cd-accumulating rice line Lu527-8 and a normal rice line Lu527-4 in response to Cd stress when exogenous NO supplied by sodium nitroprusside (SNP, a NO donor) was studied. Appreciable amounts of Cd distributed in RCW, in which most Cd ions were bound to pectin for the two rice lines when exposed to Cd. Exogenous NO upregulated the expression of OsPME11 and OsPME12 that were involved in pectin demethylesterification, resulting in more low methyl-esterified pectin and therefore stronger pectin-Cd binding. Exogenous NO also enhanced the concentration of hemicellulose and the amount of Cd ions in it. These results demonstrate that NO-induced more Cd binding in RCW in the two rice lines through promoting pectin demethylesterification and increasing hemicellulose accumulation. Higher OsPMEs expression and more hemicellulose synthesis contributed to more Cd immobilization in RCW of the high Cd-accumulating rice line Lu527-8. The main findings of this study reveal the regulation of NO on cell wall polysaccharides modification under Cd stress and help to elucidate the physiological and molecular mechanism of NO participating in Cd responses of rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available