4.5 Article

An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management

Journal

ECOLOGICAL MODELLING
Volume 468, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ecolmodel.2022.109951

Keywords

Population dynamics; Pattern-oriented modelling; Pest management; Entomovectoring; Bactrocera dorsalis; Metarhizium anisopliae

Categories

Funding

  1. Long-term EU-Africa research and innovation Partnership on food and nutrition security and sustainable Agriculture (LEAP-Agri), project Pest-Free Fruit [727715]
  2. French Embassy in Senegal
  3. CIRAD AI1

Ask authors/readers for more resources

This study examined the effectiveness of boosted SIT in controlling the Oriental fruit fly, using a model to simulate population dynamics and validating with field monitoring data. The results showed that both SIT and boosted SIT significantly reduced the density of wild fruit flies and the number of infested fruits.
The sterile insect technique (SIT) is a method of biological control of pests and disease vector insects. It includes mass-rearing and release of sterile males of the target species so that wild females mated with sterile males would not produce offspring. An innovative version of this technique, called boosted SIT, relies on the use of sterile males as vectors of biocides to trigger an epizootic in the wild fruit fly population. We built an agent-based model to assess the feasibility of this technique and main modalities of field implementation for the control of the Oriental fruit fly, Bactrocera dorsalis, using the entomopathogenic fungi, Metarizhium anisopliae, as a biocide. The model, called BOOSTIT (BactrOcera dOrsaliS boosTed sIT), simulates the spatio-temporal population dynamics of fruit flies in three different realistic landscape contexts. The releases of infected and uninfected sterile males were simulated and allowed the transmission of the pathogen within the wild fly population as a result of interactions between individuals. A main output was the measurement of losses in mango production. Validation of the model was done by comparing the simulated population dynamics with data from field monitoring (pheromone traps) in three landscapes of the Niayes area in Senegal. The population dynamics of wild flies were then simulated in an intensive cropping and mono-mango cultivar landscape under three scenarios: (1) without the release of sterile males, (2) with the release of non-contaminated sterile males (SIT) and (3) with the release of sterile contaminated males (boosted SIT). The results showed that SIT and boosted SIT strongly reduced the density of wild flies and the amount of infested fruits. Although parameters of the pathogen transfer between individuals need to be studied more deeply, results encourage the implementation of field trials to validate the efficacy of boosted SIT to control fruit flies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available