4.7 Article

Determination of urban pollution islands by using remote sensing technology in Moscow, Russia

Journal

ECOLOGICAL INFORMATICS
Volume 67, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ecoinf.2021.101493

Keywords

Air pollution; Aerosol optical thickness; Geographic information system; Particulate matter; Remote sensing; Urban heat island

Categories

Funding

  1. Moscow State University of Civil Engineering

Ask authors/readers for more resources

Air pollution is currently the most dangerous form of environmental degradation in Russia. The degree of pollution is influenced by urbanization, anthropogenic activities, and climatic conditions. Fine dust particles pose the greatest health risks.
Pollution of the atmosphere with harmful substances is currently the most dangerous form of degradation of the natural environment in Russia. The peculiarities of the environmental situation and the emerging environmental problems in some areas of the Russian Federation are caused by local natural conditions and the nature of the impacts from industries, transport, utilities, and agriculture (the specifics of enterprises, their capacity, location, technologies used). As a rule, the magnitude of air pollution depends on the degree of urbanization and anthropogenic transformation of the territory and climatic conditions that determine the potential for atmospheric pollution. During high-temperature technological processes, the smallest aerosol particles (0.5..0.10 mu m) formed, poorly captured by gas purification plants, and can migrate in the atmosphere for considerable distances. Larger particles (2.5 mu m and above) are formed due to the mechanical decomposition of solid particles and enter the atmosphere due to wind erosion, the dusting of dirt roads, the erasure of vehicle tires. The particles suspended with a diameter of not more than 2.5 mu m (PMX) are the most destructive to health since they penetrate and get deposited deep into human lungs. These microns, present in a suspended state in the air, consist of a complex mixture of large and small, solid and liquid particles, of both inorganic and organic substances. The boundary between the two fractions is usually particles with a diameter of 2.5 mu m (PM2.5). This study sought to build a model for determining fine dust PM2.5 in the Moscow air environment using Landsat 8 OLI satellite image channels and data on the concentrations of fine dust PM2.5 obtained by weather stations in the city. In addition, a correlation analysis was carried out to determine a regression model for studying the dispersion of fine dust in the city. The results obtained are presented on a map of the concentration of fine dust PM2.5 in Moscow, supporting management decisions and decision-making on environmental policy in urban planning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available