4.7 Article

Reservoir depressurization driven by passive gas emissions at Ambrym volcano

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 584, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2022.117512

Keywords

subsidence; degassing processes; magma replenishment

Funding

  1. VOLCPLUME ANR project [ANR-15-CE04-000301]
  2. European Union [665850, 101058785]
  3. Japan Aerospace Exploration Agency (JAXA 6th Research agreement) [3245]

Ask authors/readers for more resources

Passive volcanic degassing has a significant impact on the pressurization state of a magma reservoir. The study on Ambrym volcano shows that the subsidence episode corresponds to a decrease in reservoir pressure, and the injected magma can counterbalance the depressurization effect.
Despite being a widespread and common process, the impact of passive volcanic degassing on the pressurization state of a magma reservoir is not well understood. If mass loss due to gas emissions results in reservoir depressurization and surface subsidence, the pressure difference between a shallow reservoir and deep magma source may result in magma recharge and eventually trigger an eruption. It is therefore important to determine how a simplified reservoir-conduit system responds to such degassing processes. Here we use an extreme example of persistent volcanic degassing-Ambrym-as a case study to relate sulphur dioxide mass flux with reservoir depressurization and edifice-scale subsidence, both measured from satellite-based remote sensing observations. A geodetic inversion of surface displacements measured with Interferometric Synthetic Aperture Radar modeled using the Boundary Element Method provides bounds on the reservoir pressure change during an episode of subsidence at Ambrym from 2015 to 2017. These results are input into a lumped parameter theoretical model developed by Girona et al. (2014), and the free parameters (e.g., reservoir size and conduit radius) are systematically explored. We find that the 2015-2017 subsidence episode is consistent with pressure decreasing at a rate of -5.2 to -2.0 MPa year-1 in a reservoir at ~2 km b.s.l., as a result of passive degassing. The subsidence episode is observed to end abruptly in October 2017, and no significant deformation is detected in the 14 months leading up to a rift zone intrusion and submarine eruption in December 2018, despite substantial degassing. We explain this lack of pre-eruptive deformation by an influx of ~0.16 km3 of magma into a shallow (< 2 km b.s.l.) reservoir that counterbalances the depressurization caused by degassing. This recharge volume is comparable with the volume of magma subsequently extracted from Ambrym's reservoir in December 2018. We conclude that at some open-vent passively degassing volcanoes, deflation caused by degassing may reduce or even cancel any inflation signal caused by magma influx. Nonetheless, detection of pre -eruptive recharge can be achieved by monitoring changes in the long-term deformation rate. (C)& nbsp;2022 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available