4.7 Article

Dual-Step Reduction of Copper and Formation Mechanism of Cu Pseudo-Icosahedral Microcrystals

Journal

CRYSTAL GROWTH & DESIGN
Volume 22, Issue 4, Pages 2611-2619

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.cgd.2c00069

Keywords

-

Funding

  1. University of St Andrews

Ask authors/readers for more resources

Pseudo-icosahedral Cu microcrystals were synthesized in a solvothermal system and the novel formation mechanism of the crystals was investigated. The evolution of structural and morphological features of Cu microcrystals was found to be influenced by the crystalline phases in the solution, resulting in the formation of pseudo-icosahedral shapes.
Pseudo-icosahedral Cu microcrystals have been synthesized in a solvothermal system containing CuSO4 center dot 5H(2)O as the precursor, polyvinylpyrrolidone (PVP) as a reductant/capping agent, and dimethylformamide as the solvent. The structural and morphological evolutions over the reaction time are investigated, which enable us to establish a novel formation mechanism of pseudo-icosahedral crystals of Cu. The first crystalline phase that appeared in the solution is Cu4SO4(OH) 6 center dot H2O in the form of microflakes. The microflakes are reduced and decomposed to Cu2O nanocrystallites, which assemble with PVP into spherulites. The Cu2O crystals are further reduced to Cu nanocrystallites, which aggregate with PVP again into spherical particles. An extraordinary phenomenon is that 20 separated (111) triangular plates form on each particle during surface recrystallization of Cu, and their locations match to the final facets of the pseudo-icosahedron. The plates extend to cover the whole surface of the sphere, forming a pseudo-icosahedral shell, followed by extension of the recrystallization from the surface to the core. This reversed crystal growth process increases the thickness of the plates until all the Cu nanocrystallites in the core are consumed. It is found that, during the surface recrystallization of polycrystalline spheres, the particles preferentially select the (111) planes of the face-centered cubic structure of Cu as the exposed faces because these planes have the minimum surface binding energy. The particles then try to keep as small as possible the specific surface area, and a pseudo-icosahedral shape consisting of 20 (111) plates, which has a specific surface area, about 10% lower than that of an octahedron, formed by eight (111) plates. Accordingly, the overall surface free energy of a pseudo-icosahedron is about 10% lower than that of an octahedron. The formation of tetrahedra as building units of icosahedra, as predicted previously, has not been observed. The formation of ideal icosahedra, the so-called perfect Platonic solid, and the formation of twin defects between neighboring (111) plates are not possible. The newly proposed formation mechanism of pseudo-icosahedra Cu sheds light on the understanding of formation of many other polyhedral crystals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available