4.7 Article

Comparison of Response Surface Methodology and Artificial Neural Network approach in predicting the performance and properties of palm oil clinker fine modified asphalt mixtures

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 324, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.126618

Keywords

Palm oil clinker fine; Asphalt mixtures; Stiffness modulus; Rutting; Prediction; Response surface methodology; Artificial neural network

Ask authors/readers for more resources

This study investigates the use of palm oil clinker waste to modify bitumen and improve its performance. The results show that the incorporation of palm oil clinker fine enhances the stiffness and temperature susceptibility of plain bitumen. Response surface methodology and artificial neural networks are used to optimize and predict the stiffness modulus and rutting characteristics of asphalt mixtures prepared with palm oil clinker fine modified bitumen. The experimental results confirm that all mixtures containing palm oil clinker fine modified bitumen exhibit better performance than the control mixture.
Recently with the increase in traffic loading, the traditional materials used for road construction deteriorate at a faster rate due to repetitive traffic loading which greatly necessitates bitumen modification to improve its quality. Amid an ever-increasing waste generation and disposal crisis, researchers came up with multiple ideas, however, the implementation was halted due to different practitioners' policies. Palm oil clinker (POC) waste is a prevalent waste dumped around the oil palm mill that pollutes the environment. To harness sustainability, this study utilizes varying dosages of POC fine (POCF) at 2%, 4%, 6%, and 8% to produce the POCF modified bitumen (POCF-MB). Also, the conventional and microstructure properties were evaluated. The objective of this study is to utilize response surface methodology (RSM) and artificial neural networks (ANN) to optimize and predict the stiffness modulus and rutting characteristic of asphalt mixtures prepared with POCF modified bitumen (POCFMB). The conventional test results revealed that the incorporation of POCF improves the plain bitumen properties with enhanced stiffness and temperature susceptibility. Microstructural analysis highlighted that a new functional group Si-OH was formed because of the crystalline structure of Si-O that indicates bitumen properties enhancement with POCF inclusion. Two input and output variables were considered which are POCF dosage, test temperature, and stiffness modulus and rutting depth respectively. Results showed that all mixtures containing POCF-MB show better performance than the control mixture. Though, 6% POCF dosage shows improved performance compared to other mixtures increasing stiffness by 33.33% and 57.42% respectively at 25 degrees C and 40 degrees C, while rutting at 45 degrees C shows increased resistance by 25.91%. For both approaches, there was a high degree of agreement between the model-predicted values and actual. For the model statistical performance index, the RSM indicates that R2 for stiffness and rutting response were (99.700 and 99.668), RMSE (266.091 and 0.597), and MRE (68.793 and 3.841) respectively. The ANN R2 for stiffness and rutting response were (99.972 and 99.880), RMSE (61.605 and 0.280), and MRE (12.093 and 2.044) respectively. The ANN use 70% data for training, 15% data for testing, and 15% data for validation processes. The ANN model outperforms the RSM model for the prediction of POCF-MB asphalt mixtures' stiffness modulus and rutting properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available