4.7 Article

Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 145, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2022.105508

Keywords

Breast cancer; Transcriptomics analysis; Key genes (KGs); Functional and pathway enrichment analysis; Regulatory network analysis; Drug repositioning; Integrated statistics and network-based approaches

Funding

  1. Priority Academic Program Development of Jiangsu Higher Education Institutions

Ask authors/readers for more resources

This study identified differentially expressed genes (DEGs) between breast cancer (BC) and control samples, constructed a protein-protein interaction network, and selected key genes. The DEGs were found to significantly enrich key biological processes, molecular functions, cellular components, and pathways related to BC, and had strong prognostic power. Transcriptional and post-transcriptional regulators of these key genes were also detected. Additionally, three repurposable candidate-drugs for BC treatment were suggested and validated through molecular docking analysis.
Breast cancer (BC) is one of the most malignant tumors and the leading cause of cancer-related death in women worldwide. So, an in-depth investigation on the molecular mechanisms of BC progression is required for diagnosis, prognosis and therapies. In this study, we identified 127 common differentially expressed genes (cDEGs) between BC and control samples by analyzing five gene expression profiles with NCBI accession numbers GSE139038, GSE62931, GSE45827, GSE42568 and GSE54002, based-on two statistical methods LIMMA and SAM. Then we constructed protein-protein interaction (PPI) network of cDEGs through the STRING database and selected top-ranked 7 cDEGs (BUB1, ASPM, TTK, CCNA2, CENPF, RFC4, and CCNB1) as a set of key genes (KGs) by cytoHubba plugin in Cytoscape. Several BC-causing crucial biological processes, molecular functions, cellular components, and pathways were significantly enriched by the estimated cDEGs including at-least one KGs. The multivariate survival analysis showed that the proposed KGs have a strong prognosis power of BC. Moreover, we detected some transcriptional and post-transcriptional regulators of KGs by their regulatory network analysis. Finally, we suggested KGs-guided three repurposable candidate-drugs (Trametinib, selumetinib, and RDEA119) for BC treatment by using the GSCALite online web tool and validated them through molecular docking analysis, and found their strong binding affinities. Therefore, the findings of this study might be useful resources for BC diagnosis, prognosis and therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available