4.7 Article

Quantification of respiratory effort magnitude in spontaneous breathing patients using Convolutional Autoencoders

Journal

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cmpb.2021.106601

Keywords

Spontaneous breathing; Machine learning; Convolutional Autoencoder (CAE); Mechanical ventilation

Funding

  1. MedTech Centre of Research Expertise, University of Canterbury, New Zealand
  2. Monash University Malaysia Advance Engineering Platform (AEP)

Ask authors/readers for more resources

A Convolutional Autoencoder model was developed to quantify the magnitude of patient spontaneous breathing effort using the airway pressure and flow waveform during mechanical ventilation. The model was trained and validated using simulated data, and showed the ability to accurately predict normal flow and assess the magnitude of spontaneous breathing effort.
Background: Spontaneous breathing (SB) effort during mechanical ventilation (MV) is an important metric of respiratory drive. However, SB effort varies due to a variety of factors, including evolving pathology and sedation levels. Therefore, assessment of SB efforts needs to be continuous and non-invasive. This is important to prevent both over- and under-assistance with MV. In this study, a machine learning model, Convolutional Autoencoder (CAE) is developed to quantify the magnitude of SB effort using only bedside MV airway pressure and flow waveform. Method: The CAE model was trained using 12,170,655 simulated SB flow and normal flow data (NB). The paired SB and NB flow data were simulated using a Gaussian Effort Model (GEM) with 5 basis functions. When the CAE model is given a SB flow input, it is capable of predicting a corresponding NB flow for the SB flow input. The magnitude of SB effort (SBEMag) is then quantified as the difference between the SB and NB flows. The CAE model was used to evaluate the SBEMag of 9 pressure control/ support datasets. Results were validated using a mean squared error (MSE) fitting between clinical and training SB flows. Results: The CAE model was able to produce NB flows from the clinical SB flows with the median SBEMag of the 9 datasets being 25.39% [IQR: 21.87-25.57%]. The absolute error in SBEMag using MSE validation yields a median of 4.77% [IQR: 3.77-8.56%] amongst the cohort. This shows the ability of the GEM to capture the intrinsic details present in SB flow waveforms. Analysis also shows both intra-patient and inter-patient variability in SBEMag. Conclusion: A Convolutional Autoencoder model was developed with simulated SB and NB flow data and is capable of quantifying the magnitude of patient spontaneous breathing effort. This provides potential application for real-time monitoring of patient respiratory drive for better management of patient-ventilator interaction. (C) 2021 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available