4.7 Article

A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins

Journal

COMPOSITES PART B-ENGINEERING
Volume 234, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2022.109701

Keywords

Epoxy resin; Hyperbranched oligomer; Fire safety; Mechanical properties; Dielectric performances

Funding

  1. National Natural Science Foundationof China [51991355, 51903193]
  2. China Postdoctoral Science Foundation [2021M692759]
  3. Australian Research Council [DP190102992, FT190100188]
  4. Public Technical Application Project of Zhejiang in Industry [LGG21E030004]

Ask authors/readers for more resources

This study presents an effective method to create transparent epoxy thermosets with outstanding mechanical, dielectric, and fire-retardant properties by incorporating a P/N/B-containing hyperbranched oligomer. The addition of the hyperbranched additive improves the glass-transition temperature, optical transmittance, mechanical strength, and toughness of the epoxy resin, while reducing the dielectric constant, loss, heat release, and smoke generation during combustion. These findings have significant implications for the development of high-performance flame-retardant epoxy resins.
Flame-retardant epoxy resins (EPs) with superior optical, mechanical and dielectric properties are highly desired in high-tech industries. In this work, a multifunctional hyperbranched additive (BDHDP) was synthesized for EPs. Our results showed that BDHDP catalyzed the curing of epoxy resin because of its tertiary amine and hydroxyl groups. At a low addition level (<3.0 wt%), BDHDP increased the glass-transition temperature and maintained the optical transmittance of epoxy thermoset. Meanwhile, BDHDP improved the mechanical strength and toughness, and reduced the dielectric constant and loss of EP because of the rigid phosphaphenanthrene groups and intra-molecular cavities. Moreover, BDHDP reduced the heat release and smoke generation during the EP combustion. Adding 1.5 wt% of BDHDP led to a UL-94 V-0 rating, and reduced the total smoke production by 16.4%. Hence, this study offers an effective method to create transparent EP thermosets with outstanding mechanical, dielectric and fire-retardant properties via incorporating a P/N/B-containing hyperbranched oligomer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available