4.3 Article Proceedings Paper

The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

Journal

JAPANESE JOURNAL OF APPLIED PHYSICS
Volume 55, Issue 6, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.7567/JJAP.55.06JA01

Keywords

-

Ask authors/readers for more resources

For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP's use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be zero and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed. (C) 2016 The Japan Society of Applied Physics

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available