4.6 Review

Mass Transport in High-Flux Hemodialysis Application of Engineering Principles to Clinical Prescription

Journal

Publisher

AMER SOC NEPHROLOGY
DOI: 10.2215/CJN.09410721

Keywords

mass transfer; membrane; diffusion; convection; ultrafiltration; uremic toxin; hemodialysis

Funding

  1. NovaFlux

Ask authors/readers for more resources

An understanding of the processes underlying mass transfer is crucial for effective solute removal in dialytic treatment. This review applies engineering principles to characterize the physical mechanisms of diffusion and convection in hemodialysis. The impact of flow rate, dialyzer geometry, and membrane microstructure on these processes is discussed, emphasizing the importance of concepts such as boundary layers, effective membrane diffusivity, and sieving coefficients. The objective is to enhance clinicians' understanding of these factors and improve the prescription and delivery of hemodialysis therapy.
An understanding of the processes underlying mass transfer is paramount for the attainment of adequate solute removal in the dialytic treatment of patients with kidney failure. In this review, engineering principles are applied to characterize the physical mechanisms behind the two major modes of mass transfer during hemodialysis, namely diffusion and convection. The manner in which flow rate, dialyzer geometry, and membrane microstructure affect these processes is discussed, with concepts such as boundary layers, effective membrane diffusivity, and sieving coefficients highlighted as critical considerations. The objective is to improve clinicians? understanding of these concepts as important factors influencing the prescription and delivery of hemodialysis therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available