4.4 Article

Vertical ridge augmentation feasibility using unfixed collagen membranes and particulate bone substitutes: A 1-to 7-year retrospective single-cohort observational study

Journal

CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH
Volume 24, Issue 3, Pages 372-381

Publisher

WILEY
DOI: 10.1111/cid.13084

Keywords

alveolar ridge reconstruction; biomaterials; bone grafting; bone regeneration; bone substitutes

Funding

  1. Korea Government (Ministry of Science and ICT)
  2. Korea Government (Ministry of Trade, Industry and Energy)
  3. Korea Government (Ministry of Health Welfare)
  4. Korea Government (Ministry of Food and Drug Safety) [KMDF_PR_20200901_0238]
  5. Ministry of Science, ICT & Future Planning [NRF-2019R1A2C4069942]
  6. Osteology Foundation

Ask authors/readers for more resources

The study suggests that vertical ridge augmentation (VRA) can be achieved through guided bone regeneration (GBR) without additional stabilization, using only resorbable collagen membranes and particulate bone substitutes.
Aim To determine whether vertical ridge augmentation (VRA) can be obtained through guided bone regeneration (GBR) using exclusively resorbable collagen membranes and particulate bone substitutes without additional stabilization. Materials and Methods This study retrospectively examined 22 participants who underwent VRA with staged or simultaneous implant placement. The vertical defects of all participants were filled with particulate bone substitutes and covered with resorbable collagen membranes. The augmented sites were stabilized with unfixed collagen membranes and the flap without any additional fixation. The augmented tissue height was assessed using cone-beam computed tomography at baseline, immediately after surgery, and at annual follow-ups. Results The vertical bone gain of the 22 augmented sites amounted to 6.48 +/- 2.19 mm (mean +/- SD) immediately after surgery and 5.78 +/- 1.72 mm at 1- to 7-year follow-up. Of the 22 augmented sites, 18 exhibited changes of less than 1 mm, while the other 4 showed changes of greater than 1 mm. Histological observation of three representative cases revealed new bone apposition on the remaining material. Conclusion The present findings indicate that GBR procedures using exclusively collagen membranes and particulate biomaterials without any additional fixation are feasible options for VRA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available