4.2 Article

A meiotic driver alters sperm form and function in house mice: a possible example of spite

Journal

CHROMOSOME RESEARCH
Volume 30, Issue 2-3, Pages 151-164

Publisher

SPRINGER
DOI: 10.1007/s10577-022-09695-4

Keywords

t complex; gene drive; selfish genetic element; transmission ratio distortion; sperm motility; competition; social evolution

Funding

  1. University of Zurich - Swiss National Science Foundation [31003A_160328]
  2. Swiss National Science Foundation (SNF) [31003A_160328] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

The meiotic driver t haplotype causes lasting damage to the motility of both + and t developing sperm in mice, leading to a lower success rate in competition with +/+ sperm.
The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This system is thought to result in poorly and normally motile sperm subpopulations within + /t sperm, leaving t sperm unharmed. Conversely, we found that the fastest quartile of sperm from + /t males swam more slowly, both forwards and along their travel path, and had reduced straightness and linearity, compared to the fastest quartile of + / + sperm. Moreover, sperm from + /t males had shorter tails and narrower heads than + / + sperm, and these morphological differences covaried with motility differences. Finally, + /t traits did not show evidence of bimodal distributions. We conclude that the t haplotype drive results in lasting damage to the motility of both + and t developing sperm, although previous studies indicate that + must be more harmed than t sperm. This damage to all sperm may explain the low success of + /t males in sperm competition with + / + males, seen in earlier studies. We propose that the harm the t causes to itself could be termed 'spiteful', which may also be common to other gamete-harming meiotic drive systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available