4.7 Article

Size-dependent visible-light-enhanced Cr(VI) bioreduction by hematite nanoparticles

Journal

CHEMOSPHERE
Volume 295, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.133633

Keywords

Cr(VI) reduction; Extracellular electron transfer; Visible light irradiation; Hematite particle size

Funding

  1. National Natural Science Foundation of China [42077017, 41671230, 41807024, 41961130383]

Ask authors/readers for more resources

Light irradiation affects the electron transfer between dissimilatory metal-reducing bacteria (DMRB) and semiconducting minerals, which has implications for the biogeochemical cycle of heavy metals. The reduction of Cr(VI) by Shewanella oneidensis MR1 (MR-1) was investigated in the presence of hematite nanoparticles, and it was found that the nanoparticles enhanced the reduction rate under visible light irradiation. Mutant strains experiments demonstrated the vital role of c-cytochrome for the conducting network established by MR-1 with hematite nanoparticles.
Light irradiation would affect the electron transfer between dissimilatory metal-reducing bacteria (DMRB) and semiconducting minerals, which may impose a great influence on the biogeochemistry cycle of heavy metals. However, the size effect of semiconducting minerals on the its electron transfer with DMRB and microbial Cr(VI) reduction under visible light irradiation is little known. Herein, the Cr(VI) reduction by Shewanella oneidensis MR1 (MR-1) was investigated in the presence of hematite nanoparticles with average diameters of 10 nm and 50 nm in dark and under visible light irradiation. It is found that hematite nanoparticles adhered onto MR-1 cells to form the composites, leading to the decrease in surface sites and Zeta potential. Hematite mediated-Cr(VI) bioreduction rate under visible light irradiation was 0.342 h-1, which is 3.4 folds enhancement compared with that in dark and 4.4 folds compared with the MR-1 alone under visible light irradiation. Decreasing nanoparticle size of hematite from 50 nm to 10 nm promoted the Cr(VI) reduction under visible light irradiation but impeded it in dark. It was deduced that the bioelectrons from MR-1 could promote the separation of photoelectron-hole pairs of light-irradiated hematite, which consequently enhanced the Cr(VI) bioreduction by MR-1-hematite composites. Moreover, mutant strains experiments demonstrated the vital role of c-cytochrome for the conducting network actively established by MR-1 with hematite nanoparticles. Those findings expand the understanding of the electron transfer pathway for enhancing Cr(VI) reduction by hematite-MR-1 composites, and the impact of particle size on the interaction between semiconducting mineral and electroactive bacteria under light irradiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available