4.8 Review

Non-Noble Plasmonic Metal-Based Photocatalysts

Journal

CHEMICAL REVIEWS
Volume 122, Issue 11, Pages 10484-10537

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.1c00473

Keywords

-

Funding

  1. National Key Research and Development Program of China [2018YFB1502001]
  2. National Natural Science Foundation of China [51932007, 51961135303, 21871217, U1905215, 52073223, 21972030, 51772058]

Ask authors/readers for more resources

This review comprehensively summarizes the recent advances and applications of non-noble plasmonic metal (NNPMs)-based photocatalysts. By introducing the principles of surface plasmon resonance (SPR) and discussing the functionalities and attributes of NNPMs in photocatalysis, their applications in pollutant removal, water splitting, CO2 reduction, and organic transformations are explored. The review concludes by addressing the current challenges and future prospects in the field of plasmon-based photocatalysis, emphasizing its interdisciplinary nature across materials science, chemistry, and physics.
Solar-to-chemical energy conversion via heterogeneous photocatalysis is one of the sustainable approaches to tackle the growing environmental and energy challenges. Among various promising photocatalytic materials, plasmonic-driven photocatalysts feature prominent solar-driven surface plasmon resonance (SPR). Non-noble plasmonic metals (NNPMs)-based photocatalysts have been identified as a unique alternative to noble metal-based ones due to their advantages like earth-abundance, cost-effectiveness, and large-scale application capability. This review comprehensively summarizes the most recent advances in the synthesis, characterization, and properties of NNPMs-based photocatalysts. After introducing the fundamental principles of SPR, the attributes and functionalities of NNPMs in governing surface/interfacial photocatalytic processes are presented. Next, the utilization of NNPMs-based photocatalytic materials for the removal of pollutants, water splitting, CO2 reduction, and organic transformations is discussed. The review concludes with current challenges and perspectives in advancing the NNPMs-based photocatalysts, which are timely and important to plasmon-based photocatalysis, a truly interdisciplinary field across materials science, chemistry, and physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available