4.7 Article

Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 431, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2021.133209

Keywords

Perovskite solar cells; Buried interface; Interface engineering; Defect passivation; Energy band alignment

Funding

  1. China for Entrepreneurship and Innovation [cx2020003]
  2. Fundamental Research Funds for the Central Uni-versities [2020CDJQY-A028, 2020CDJ-LHZZ-074]
  3. Natural Science Foundation of Chongqing [cstc2020jcyj-msxmX0629]

Ask authors/readers for more resources

A simple and effective buried interface passivation strategy based on cation engineering was developed for perovskite solar cells. The modifiers CDSC and DPAH can passivate defects on the surface of perovskite and SnO2 films, and reduce interfacial energy barrier by improving energy band alignment. CDSC demonstrated superior defect passivation and energy band modulation compared to DPAH.
The interfacial carrier nonradiative recombination resulting from defects and energy barrier at buried interface hinders further enhancement of power conversion efficiency (PCE) and stability of perovskite solar cells. Herein, we report a simple and effective buried interface passivation strategy based on cation engineering through employing a new type of sulfonium salt ((2-carboxyethyl) dimethyl sulfonium chloride, CDSC) together with reference molecule (3-dimethylamino propionic acid hydrochloride, DPAH) to modify the interface between perovskite and electron transport layers. It is theoretically and experimentally revealed at the atomic scale that CDSC and DPAH chemically interact with both SnO2 and perovskite layer and accordingly well bridge both layers. Both modifiers can not only passivate the defects from the surface of perovskite and SnO2 films, but also reduce interfacial energy barrier via improving energy band alignment. CDSC are certified to be more effective in defect passivation and energy band modulation than DPAH, for the first time revealing that sulfonium cations are superior to commonly adopted ammonium cations. Finally, the DPAH and CDSC-modified devices achieve a PCE of 21.44% and 22.22%, respectively, far outperforming the control device (20.72%). The unsealed devices with CDSC maintain 92.5% of their initial efficiency after thermal aging for 1272 h.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available