4.7 Article

3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair

Journal

CERAMICS INTERNATIONAL
Volume 48, Issue 6, Pages 7491-7499

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2021.11.293

Keywords

Polycaprolactone; Bioactive glass; 3D printing; Osteoinduction; Bone repair

Funding

  1. Innovative Talent Training program of Department of Science and Technology of Jilin Province, China [3D518U523430]

Ask authors/readers for more resources

This study used bioactive glass to improve the bone repair scaffold material made of polycaprolactone (PCL) and found that increasing the content of bioactive glass can enhance the hydrophilicity of the scaffold, improve cell adhesion and proliferation, and promote bone repair. The results of the study suggest that PCL scaffolds containing 20% bioactive glass have great potential for clinical bone repair.
3D printing technology can fabricate customized scaffolds based on patient-derived medical images, so it has attracted much attention in the field of developing bone repair scaffolds. Polycaprolactone (PCL) is a suitable polymer for preparing bone repair scaffolds because of its good biocompatibility, thermal stability, excellent mechanical properties and degradable properties. However, PCL is a bioinert material and cannot induce new bone formation at the defect site. In this study, the bioactive material 58s bioactive glass was mixed into PCL to form PCL/bioactive glass composite material. The results of contact angle showed that the hydrophilicity of the scaffold was significantly enhanced with the increase of bioactive glass content. In vitro experiment results showed that, with the increase of bioactive glass content, cell adhesion and proliferation were enhanced, the expression levels of Runx2 and Collagen I(COL-I) were upregulated. The experimental results of in vivo radial defect repair in rats also showed that the effect of bone repair was improved with the increase of bioactive glass content. In conclusion, PCL customized bone repair scaffold containing 20% bioactive glass has widely potential used in the field of clinical bone repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available