4.7 Article

Influence of carbonation treatment on the properties of multiple interface transition zones and recycled aggregate concrete

Journal

CEMENT & CONCRETE COMPOSITES
Volume 127, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2021.104402

Keywords

Recycled aggregate concrete (RAC); Carbonation treatment; Interface transition zone (ITZ); Microproperties; Compressive strength; Chloride ion penetration resistance

Funding

  1. National NaturalScience Foundation of China [52078139, 51438007]

Ask authors/readers for more resources

The carbonation treatment improved the properties of weak multiple interface transition zones (ITZs) in recycled aggregate concrete (RAC), enhancing the performance of the concrete. Different carbonation conditions had consistent effects on the microproperties and macroproperties of RAC, with compressive strength and chloride ion penetration resistance showing a linear correlation with the modulus of the ITZ.
Because of the carbonation treatment of recycled coarse aggregates (RCAs), the properties of the weak multiple interface transition zones (ITZs) in recycled aggregate concrete (RAC) can be improved, contributing to the enhanced behaviour of the RAC. In this study, different carbonation conditions (carbonation pressure, initial moisture contents of the RCAs and carbonation duration) were considered. A model of the RACs (MIRAC) was prepared to accurately locate multiple ITZs. Nanoindentation tests, scanning electron microscopy (SEM) tests were conducted to study the effect of carbonation treatment on the microproperties of RAC. At the same time, the influence of the carbonation treatment on the compressive strength and chloride ion penetration resistance of the RAC was evaluated. Moreover, the relationship between the microproperties and macroproperties of the RAC was discussed. The results showed that the modulus of the ITZs, the old mortar matrix and the new mortar matrix increased while the thickness of the ITZs decreased when the carbonation pressure or carbonation duration were increased. However, there was no further significant change after the carbonation pressure exceeded 1 bar, and the carbonation rate began to decrease significantly after 3 h of carbonation. The carbonation efficiency was superior when the moisture content was 1.81%. The effects of different carbonation parameters on the micro properties and macroproperties of the RAC were consistent. The compressive strength and chloride ion penetration resistance of the RAC had a linear correlation with the modulus of the ITZ between the aggregate and old mortar.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available