4.5 Article

Large-scale Integrated Analysis of Genetics and Metabolomic Data Reveals Potential Links Between Lipids and Colorectal Cancer Risk

Journal

CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION
Volume 31, Issue 6, Pages 1216-1226

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1055-9965.EPI-21-1008

Keywords

-

Funding

  1. [K99/R00 CA230205]

Ask authors/readers for more resources

This study identified potential novel risk biomarkers for colorectal cancer by integrating genetics and circulating metabolomics data. The results highlight the importance of lipids, especially certain glycerophospholipids and triacylglycerols, in the etiology of colorectal cancer.
Background: The etiology of colorectal cancer is not fully understood. Methods: Using genetic variants and metabolomics data including 217 metabolites from the Framingham Heart Study (n = 1,357), we built genetic prediction models for circulating metabolites. Models with prediction R-2 > 0.01 (N-metabolite = 58) were applied to predict levels of metabolites in two large consortia with a combined sample size of approximately 46,300 cases and 59,200 controls of European and approximately 21,700 cases and 47,400 controls of East Asian (EA) descent. Genetically predicted levels of metabolites were evaluated for their associations with colorectal cancer risk in logistic regressions within each racial group, after which the results were combined by meta-analysis. Results: Of the 58 metabolites tested, 24 metabolites were significantly associated with colorectal cancer risk [Benjamini-Hochberg FDR (BH-FDR) < 0.05] in the European population (ORs ranged from 0.91 to 1.06; P values ranged from 0.02 to 6.4 x 10(-8)). Twenty one of the 24 associations were replicated in the EA population (ORs ranged from 0.26 to 1.69, BH-FDR < 0.05). In addition, the genetically predicted levels of C16:0 cholesteryl ester was significantly associated with colorectal cancer risk in the EA population only (OREA: 1.94, 95% CI, 1.60-2.36, P = 2.6 x 10(-11); OREUR: 1.01, 95% CI, 0.99-1.04, P = 0.3). Nineteen of the 25 metabolites were glycerophospholipids and triacylglycerols (TAG). Eighteen associations exhibited significant heterogeneity between the two racial groups (P-UR-EA-Het(E) < 0.005), which were more strongly associated in the EA population. This integrative study suggested a potential role of lipids, especially certain glycerophospholipids and TAGs, in the etiology of colorectal cancer. Conclusions: This study identified potential novel risk biomarkers for colorectal cancer by integrating genetics and circulating metabolomics data. Impact: The identified metabolites could be developed into new tools for risk assessment of colorectal cancer in both European and EA populations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available