4.8 Article

An ultra-compact and wireless tag for battery-free sweat glucose monitoring

Journal

BIOSENSORS & BIOELECTRONICS
Volume 213, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114450

Keywords

Wearable sensors; Point-of-care diagnostics; Diabetes; Continuous glucose monitoring; Femtosecond laser

Funding

  1. Scientific and Technological Research Council of Turkey (TUBITAK) [118C295, 118C155, 120M363]
  2. Marie Sklodowska-Curie Individual Fellowship [H2020-MSCA-IF-2018-840786]

Ask authors/readers for more resources

Glucose monitoring before, during, and after exercise is crucial for individuals with diabetes due to the increased risk of hyper- and hypo-glycemic events. A compact wearable glucose monitoring device was proposed for sweat analysis, featuring a flexible and conformal structure with excellent operating characteristics.
Glucose monitoring before, during, and after exercise is essential for people with diabetes as exercise increases the risk of activity-induced hyper- and hypo-glycemic events. The situation is even more challenging for athletes with diabetes as they have impaired metabolic control compared to sedentary individuals. In this regard, a compact and noninvasive wearable glucose monitoring device that can be easily worn is critical to enabling glucose monitoring. This report presents an ultra-compact glucose tag with a footprint and weight of 1.2 cm(2) and 0.13 g, respectively, for sweat analysis. The device comprises a near field communication (NFC) chip, antenna, electrochemical sensor, and microfluidic channels implemented in different material layers. The device has a flexible and conformal structure and can be easily attached to different body parts. The battery-less operation of the device was enabled by NFC-based wireless power transmission and the compact antenna. Femtosecond laser ablation was employed to fabricate a highly compact and flexible NFC antenna. The proposed device demonstrated excellent operating characteristics with a limit of detection (LOD), limit of quantification (LOQ), and sensitivity of 24 mu M, 74 mu M, and 1.27 mu A cm(-2) mM(-1), respectively. The response of the proposed sensor in sweat glucose detection and quantification was validated by nuclear magnetic resonance spectroscopy (NMR). Also, the device's capability in attachment to the body, sweat collection, and glucose measurement was demonstrated through in vitro and in vivo experiments, and satisfactory results were obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available