4.8 Article

Rapid and ultrasensitive electrochemical detection of DNA methylation for ovarian cancer diagnosis

Journal

BIOSENSORS & BIOELECTRONICS
Volume 206, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114126

Keywords

DNA methylation; Electrochemistry; Liquid biopsy; Gold-coated magnetic nanoparticle; Biosensor

Funding

  1. National Health and Medical Research Council Investigator Award [APP1196648]

Ask authors/readers for more resources

An ultra-sensitive and highly-selective electrochemical biosensor has been developed for rapid detection of DNA methylation in blood, providing a promising method for minimally invasive diagnosis of ovarian cancer.
Alterations in DNA methylation, a stable epigenetic marker, are important components in the development of cancer. It is vital to develop diagnostic systems with the ability to rapidly quantify DNA methylation with high sensitivity and selectivity. However, the analysis of DNA methylation must address two main challenges: (i) ultralow abundance and (ii) differentiating methylated cytosine from normal cytosine on target DNA sequence in the presence of an overwhelming background of circulating cell-free DNA. Here we report the development of an ultrasensitive and highly-selective electrochemical biosensor for the rapid detection of DNA methylation in blood. The sensing of DNA methylation involves the hybridization on a network of probe DNA modified gold coated magnetic nanoparticles (DNA-Au@MNPs) complementary to target DNA, and subsequently enzymatic cleavage to differentiate methylated DNA strands from corresponding unmethylated DNA strands. The biosensor presents a dynamic range from 2 aM to 20 nM for 110 nucleotide DNA sequences containing a single-site methylation with the lowest detected concentration of 2 aM. This DNA-Au@MNPs based sensor provides a promising method to achieve 35 min response time and minimally invasive diagnosis of ovarian cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available