4.6 Article

Decoupling of silica, nitrogen and phosphorus cycling in a meromictic subalpine lake (Lake Iseo, Italy)

Journal

BIOGEOCHEMISTRY
Volume 159, Issue 3, Pages 371-392

Publisher

SPRINGER
DOI: 10.1007/s10533-022-00933-9

Keywords

Silica; Nitrogen; Phosphorus; Meromictic lakes; Biogenic silica; Nutrient loads

Funding

  1. CARIPLO Foundation [2015-0241]
  2. Lombardy Region within the project Assessment of the limnological status of the Lombardy Region lakes and of nutrients loads formation in heavily exploited watersheds

Ask authors/readers for more resources

This study examines the coupling and stoichiometry of silica, nitrogen, and phosphorus cycling in Lake Iseo, Northern Italy. The research finds that the lake differentially retains external loads of silica, nitrogen, and phosphorus, with phosphorus and silica showing higher retention rates compared to nitrogen. This differential retention may lead to increased silica and phosphorus limitation in the photic zone and a shift towards more oligotrophic conditions. Extreme climate events that cause water overturn could disrupt this equilibrium, highlighting the importance of understanding these processes.
Silica (Si), nitrogen (N) and phosphorus (P) loads and stoichiometry are key factors controlling the trophic status of lakes and coastal seas. In the hydrographic network, lakes also act as biogeochemical reactors, controlling both nutrient retention and fluxes. This work aimed to examine the coupling of Si, N and P cycling, together with their stoichiometry in a deep meromictic subalpine lake (Lake Iseo, Northern Italy). Si, N and P mass budgets were calculated by quantifying loads in the inlets and in the outlet over a period of 30 months (May 2016-October 2018), in-lake sedimentation rates and net nutrients accumulation in the water body. Lake Iseo acts as a biogeochemical filter, which differentially retains the external Si, N and P loads. Retention of Si and P was similar (75-79%), but considerably higher than N (45%), evidencing a decoupling of their fate due to in-lake processes. This differential retention is likely to be exacerbated by meromixis which enhances Si and P accumulation in the monimolimnion, while impairing denitrification, thus limiting N removal. Such decoupling resulted in an increase of the N:Si and N:P ratios in both the epilimnion and in the outlet compared to the inlets, whereas the ratios decreased in the monimolimnion. As a result, there may be a stronger Si and P limitation of the photic zone, leading to a shift towards more oligotrophic conditions. This transient equilibrium could be impaired in the case of water overturn produced by extreme climate events-a highly relevant issue, considering that a growing number of deep lakes are turning from holo-oligomictic to meromictic as a result of combined eutrophication and climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available