4.5 Article

Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images

Journal

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING
Volume 42, Issue 2, Pages 695-706

Publisher

ELSEVIER
DOI: 10.1016/j.bbe.2022.05.003

Keywords

Retinal blood vessel segmentation; 2D Gabor filter; Convolutional neural network; Dilated convolution; Feature fusion

Ask authors/readers for more resources

This research proposes a novel method for retinal blood vessel segmentation based on a dual-channel asymmetric convolutional neural network (CNN). The method combines thick and thin vessel extraction modules and fuses the segmentation results of thick and thin vessels. In experiments, the method achieves good performance on the DRIVE and CHASE_DB1 databases.
The morphological properties of retinal vessels are closely related to the diagnosis of ophthalmic diseases. However, many problems in retinal images, such as complicated directions of vessels and difficult recognition of capillaries, bring challenges to the accurate segmentation of retinal blood vessels. Thus, we propose a new retinal blood vessel segmentation method based on a dual-channel asymmetric convolutional neural network (CNN). First, we construct the thick and thin vessel extraction module based on the morphological differences in retinal vessels. A two-dimensional (2D) Gabor filter is used to perceive the scale characteristics of blood vessels after selecting the direction of blood vessels; thereby, adaptively extracting the thick vessel features characterizing the overall characteristics and the thin vessel features preserving the capillaries from fundus images. Then, considering that the single-channel network is unsuitable for the unified characterization of thick and thin vessels, we develop a dual-channel asymmetric CNN based on the U-Net model. The MainSegment-Net uses the step-by-step connection mode to achieve rapid positioning and segmentation of thick vessels; the FineSegment-Net combines dilated convolution and the skip connection to achieve the fine extraction of thin vessels. Finally, the output of the dual-channel asymmetric CNN is fused and coded to combine the segmentation results of thick and thin vessels. The performance of our method is evaluated and tested by DRIVE and CHASE_DB1. The results show that the accuracy (Acc), sensitivity (SE), and specificity (SP) of our method on the DRIVE database are 0.9630, 0.8745, and 0.9823, respectively. The evaluation indexes Acc, SE, and SP of the CHASE_DB1 database are 0.9694, 0.8916, and 0.9794, respectively. Additionally, our method combines the biological vision mechanism with deep learning to achieve rapid and automatic segmentation of retinal vessels, providing a new idea for diagnosing and analyzing subsequent medical images. (c) 2022 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available