4.6 Article

Galactic mass-to-light ratios with superfluid dark matter

Journal

ASTRONOMY & ASTROPHYSICS
Volume 664, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202243216

Keywords

galaxies; kinematics and dynamics; dark matter; gravitation; gravitational lensing; strong

Funding

  1. DFG (German Research Foundation) [HO 2601/8-1]
  2. NSF [PHY-1911909]

Ask authors/readers for more resources

This study made rotation curve fits using the superfluid dark matter model and evaluated the relationship between the fits, stellar mass-to-light ratios, and the resemblance to MOND. The results showed that the mass-to-light ratios obtained with superfluid dark matter are generally reasonable, but they exhibit an unnatural dependence on galaxy size. Additionally, when the fits were forced to resemble MOND, there was tension between the total dark matter mass and gravitational lensing data.
Context. We make rotation curve fits to test the superfluid dark matter model. Aims. In addition to verifying that the resulting fits match the rotation curve data reasonably well, we aim to evaluate how satisfactory they are with respect to two criteria, namely, how reasonable the resulting stellar mass-to-light ratios are and whether the fits end up in the regime of superfluid dark matter where the model resembles modified Newtonian dynamics (MOND). Methods. We fitted the superfluid dark matter model to the rotation curves of 169 galaxies in the SPARC sample. Results. We found that the mass-to-light ratios obtained with superfluid dark matter are generally acceptable in terms of stellar populations. However, the best-fit mass-to-light ratios have an unnatural dependence on the size of the galaxy in that giant galaxies have systematically lower mass-to-light ratios than dwarf galaxies. A second finding is that the superfluid often fits the rotation curves best in the regime where the superfluid's force cannot resemble that of MOND without adjusting a boundary condition separately for each galaxy. In that case, we can no longer expect superfluid dark matter to reproduce the phenomenologically observed scaling relations that make MOND appealing. If, on the other hand, we consider only solutions whose force approximates MOND well, then the total mass of the superfluid is in tension with gravitational lensing data. Conclusions. We conclude that even the best fits with superfluid dark matter are still unsatisfactory for two reasons. First, the resulting stellar mass-to-light ratios show an unnatural trend with galaxy size. Second, the fits do not end up in the regime that automatically resembles MOND, and if we force the fits to do so, the total dark matter mass is in tension with strong lensing data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available