4.6 Article

A low accretion efficiency of planetesimals formed at planetary gap edges

Journal

ASTRONOMY & ASTROPHYSICS
Volume 661, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202142391

Keywords

planets and satellites; formation; protoplanetary disks; planet-disk interactions

Funding

  1. Swedish Research Council [2018-04867]
  2. Knut and Alice Wallenberg Foundation (Wallenberg Academy Fellow Grant) [2017.0287]
  3. European Research Council (ERC Consolidator Grant) [724 687-PLANETESYS]
  4. Goran Gustafsson Foundation for Research in Natural Sciences and Medicine
  5. Wallenberg Foundation [KAW 2019.0442]
  6. Swiss National Science Foundation (SNSF) [200020_188460]
  7. Royal Physiographic Society of Lund

Ask authors/readers for more resources

Observations and models show that giant planets have higher levels of heavy elements compared to the Sun. Previous explanations suggest that these elements were accreted after the core formation phase. However, this study finds that the accretion efficiency of planetesimals formed at planetary gap edges is very low, suggesting alternative processes may be responsible for the high heavy element content of giant planets.
Observations and models of giant planets indicate that such objects are enriched in heavy elements compared to solar abundances. The prevailing view is that giant planets accreted multiple Earth masses of heavy elements after the end of core formation. Such late solid enrichment is commonly explained by the accretion of planetesimals. Planetesimals are expected to form at the edges of planetary gaps, and here we address the question of whether these planetesimals can be accreted in large enough amounts to explain the inferred high heavy element contents of giant planets. We performed a series of N-body simulations of the dynamics of planetesimals and planets during the planetary growth phase, taking gas drag into account as well as the enhanced collision cross section caused by the extended envelopes. We considered the growth of Jupiter and Saturn via gas accretion after reaching the pebble isolation mass and we included their migration in an evolving disk. We find that the accretion efficiency of planetesimals formed at planetary gap edges is very low: less than 10% of the formed planetesimals are accreted even in the most favorable cases, which in our model corresponds to a few Earth masses. When planetesimals are assumed to form beyond the feeding zone of the planets, extending to a few Hill radii from a planet, accretion becomes negligible. Furthermore, we find that the accretion efficiency increases when the planetary migration distance is increased and that the efficiency does not increase when the planetesimal radii are decreased. Based on these results, we conclude that it is difficult to explain the large heavy element content of giant planets with planetesimal accretion during the gas accretion phase. Alternative processes most likely are required, such as accretion of vapor deposited by drifting pebbles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available