4.7 Article

First identification, chemical analysis and pharmacological characterization of N-piperidinyl etonitazene (etonitazepipne), a recent addition to the 2-benzylbenzimidazole opioid subclass

Journal

ARCHIVES OF TOXICOLOGY
Volume 96, Issue 6, Pages 1865-1880

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00204-022-03294-2

Keywords

New synthetic opioids (NSOs); 2-benzylbenzimidazole 'nitazene' opioids; Activity-based detection; N-piperidinyl etonitazene 'etonitazepipne'; New psychoactive substances (NPS); mu-opioid receptor

Categories

Funding

  1. Research Foundation-Flanders (FWO) [1S81522N, 1703320 N, G069419N]
  2. Ghent University Special Research Fund (BOF) [01J15517]
  3. Intramural Research Program (IRP) of the National Institute on Drug Abuse (NIDA)
  4. National Institutes of Health

Ask authors/readers for more resources

This study provides a detailed chemical analysis and pharmacological characterization of N-Piperidinyl etonitazene. The results indicate that N-Piperidinyl etonitazene is a potent opioid with the potential to cause harm in users.
N-Piperidinyl etonitazene ('etonitazepipne') represents a recent addition to the rapidly expanding class of 2-benzylbenzimidazole `nitazene' opioids. Following its first identification in an online-sourced powder and in biological samples from a patient seeking help for detoxification, this report details its in-depth chemical analysis and pharmacological characterization. Analysis of the powder via different techniques (LC-HRMS, GC-MS, UHPLC-DAD, FT-IR) led to the unequivocal identification of N-piperidinyl etonitazene. Furthermore, we report the first activity-based detection and analytical identification of N-piperidinyl etonitazene in authentic samples. LC-HRMS analysis revealed concentrations of 1.21 ng/mL in serum and 0.51 ng/mL in urine, whereas molecular networking enabled the tentative identification of various (potentially active) urinary metabolites. In addition, we determined that the extent of opioid activity present in the patient's serum was equivalent to the in vitro opioid activity exerted by 2.5-10 ng/mL fentanyl or 10-25 ng/mL hydromorphone in serum. Radioligand binding assays in rat brain tissue revealed that the drug binds with high affinity (K-i= 14.3 nM) to the mu-opioid receptor (MOR). Using a MOR-beta-arrestin2 activation assay, we found that N-piperidinyl etonitazene is highly potent (EC50 = 2.49 nM) and efficacious (E-max = 183% versus hydromorphone) in vitro. Pharmacodynamic evaluation in male Sprague Dawley rats showed that N-piperidinyl etonitazene induces opioid-like antinociceptive, cataleptic, and thermic effects, its potency in the hot plate assay (ED50 = 0.0205 mg/kg) being comparable to that of fentanyl (ED50 = 0.0209 mg/kg), and > 190 times higher than that of morphine (ED50 = 3.940 mg/kg). Taken together, our findings indicate that N-piperidinyl etonitazene is a potent opioid with the potential to cause harm in users.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available