4.7 Article

Data augmentation for Convolutional LSTM based brain computer interface system

Journal

APPLIED SOFT COMPUTING
Volume 122, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.asoc.2022.108811

Keywords

Convolutional LSTM neural network; Data augmentation; Brain computer interface; Empirical Mode Decomposition

Funding

  1. University of Vic-Central University of Catalonia, Spain [R0947]
  2. based upon COST Action [CA18106]
  3. COST (European Cooperation in Science and Technology)
  4. Ministry of Science and Higher Education [075-10-2021-068]

Ask authors/readers for more resources

This study proposed a method of generating artificial data using empirical mode decomposition (EMD) to train neural networks for brain computer interfaces. The experiments showed that introducing artificial frames significantly improved performance and reduced the number of experiments and training costs.
Electroencephalogram (EEG) is a noninvasive method to detect spatio-temporal electric signals in human brain, actively used in the recent development of Brain Computer Interfaces (BCI). EEG's patterns are affected by the task, but also other variable factors influence the subject focus on the task and result in noisy EEG signals difficult to decipher. To surpass these limitations methods based on artificial neural networks (ANNs) are used, they are inherently robust to noise and do not require models. However, they learn from examples and require lots of training data-sets. This will increase costs, need research time and subjects effort. To reduce the number of experiments necessary for network training, we devised a methodology to provide artificial data from a limited number of training data-sets. This was done by applying Empirical Mode Decomposition (EMD) on the EEG frames and intermixing their Intrinsic Mode Function (IMFs). We experimented on motor imagery (MI) tests where participants were asked to imagine movement of the left (or right) arm while under EEG recording. The EEG data were firstly transformed using the Morlet wavelet and then fed to an originally designed Convolutional Neural Network (CNN) with long short term memory blocks (LSTM-RNN). The introduction of artificial frames improved performances when compared with standard algorithms. The artificial frames become advantageous even when the number of available real frames was only of 7 or 8. In a test with two subjects (200 recordings for each subject), we reached an accuracy better than 88% for both subjects. Improvements due to the artificial data were especially noticeable for the under-performing subject, whose EEG had lower accuracy. Imagination recognition accuracy was about 89% with 360 training frames, in which 300 were artificially created starting from 60 real ones. We believe this methodology of synthesizing artificial data may contribute to the development of novel and more efficient ways to train neural networks for brain computer interfaces.(C) 2022 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available