4.6 Article

Recovering the second moment of the strain distribution from neutron Bragg edge data

Journal

APPLIED PHYSICS LETTERS
Volume 120, Issue 16, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0085896

Keywords

-

Funding

  1. EPSRC [EP/P02226X/1, EP/V007742/1]
  2. EPSRC grant EPSRC Centre for Doctoral Training in Agri-Food Robotics [EP/S023917/1]
  3. Federal Ministry of Education and Research (BMBF)
  4. Baden-Wurttemberg Ministry of Science as part of the Excellence Strategy of the German Federal and State Governments
  5. Royal SocietyWolfson Research Merit Award

Ask authors/readers for more resources

Point by point strain scanning is commonly used to map residual stress in engineering materials, but its spatial resolution is limited. Alternatively, wavelength resolved neutron transmission imaging can retrieve tomographic information about residual strain induced within materials. In this study, we experimentally demonstrate the reliable measurement of the second moment of strain distribution.
Point by point strain scanning is often used to map the residual stress (strain) in engineering materials and components. However, the gauge volume and, hence, spatial resolution are limited by the beam defining apertures and can be anisotropic for very low and high diffraction (scattering) angles. Alternatively, wavelength resolved neutron transmission imaging has a potential to retrieve information tomographically about residual strain induced within materials through measurement in transmission of Bragg edges-crystallographic fingerprints whose locations and shapes depend on microstructure and strain distribution. In such a case, the spatial resolution is determined by the geometrical blurring of the measurement setup and the detector point spread function. Mathematically, reconstruction of the strain tensor field is described by the longitudinal ray transform; this transform has a non-trivial null-space, making direct inversion impossible. A combination of the longitudinal ray transform with physical constraints was used to reconstruct strain tensor fields in convex objects. To relax physical constraints and generalize reconstruction, a recently introduced concept of histogram tomography can be employed. Histogram tomography relies on our ability to resolve the distribution of strain in the beam direction, as we discuss in the paper. More specifically, Bragg edge strain tomography requires extraction of the second moment (variance about zero) of the strain distribution, which has not yet been demonstrated in practice. In this paper, we verify experimentally that the second moment can be reliably measured for a previously well characterized aluminum ring and plug sample. We compare experimental measurements against numerical calculation and further support our conclusions by rigorous uncertainty quantification of the estimated mean and variance of the strain distribution. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available