4.8 Article

Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 302, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120860

Keywords

Oxygen reduction; Single-atom catalysts; N-doped porous carbons; Active site density; Fuel cell

Funding

  1. National Key Research and Development Program of China [2017YFA0206500]
  2. Key Program of National Natural Science Foundation of China [51732002]
  3. Distinguished Scientist Program at BUCT [buctylkxj02]
  4. Fundamental Research Funds for the Central Universities [buctrc202007]

Ask authors/readers for more resources

A novel polydopamine-metal complex-assisted pyrolysis strategy was used to produce catalysts with hierarchically porous carbon support and highly exposed dense-FeN4 sites, leading to significantly enhanced performance for oxygen reduction reaction (ORR) and superior power densities in proton exchange membrane fuel cells (PEMFCs). The quantitative relationship between the active site activity and ORR performance was established, highlighting the dominating role of FeN4 site density in the observed excellent PEMFC performance. This work provides a useful guidance for the design and development of novel highly-efficient single-atomic catalysts for renewable energy applications.
The design and development of highly efficient non-precious metal single-atomic ORR catalysts for proton exchange membrane fuel cells (PEMFCs) are highly desirable but challenging. Herein, we report a novel polydopamine (PDA)-metal complex-assisted pyrolysis strategy for producing zeolitic imidazolate framework-derived catalysts with a hierarchically porous carbon support and highly exposed dense-FeN4 sites (Z8@DA-FIP-950-C). The resultant Z8@DA-FIP-950-C catalyst shows remarkably enhanced performance for oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.828 V in 0.1 M HClO4 solution, which is close to commercial 20 wt% Pt/C catalyst. Impressively, the Z8@DA-FIP-950-C exhibits peak power densities of 982 and 454 mW cm-2 in H2/ O2 and H2/air PEMFCs, respectively, which are superior to most of non-precious metal catalysts reported to date. In addition, we construct the quantitative relationship between the active site activity and ORR performance, and prove the dominating role of the FeN4 site density to the observed excellent PEMFC performance. This work demonstrates a facile strategy to prepare the 3D hierarchically porous carbons with a maximized exposure of high-dense FeN4 sites (without acid treatment), providing a useful guidance for the design and development of novel highly-efficient single-atom catalysts for the renewable energy applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available