4.8 Article

High performance ozone decomposition spinel (Mn,Co)3O4 catalyst accelerating the rate-determining step

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 303, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120927

Keywords

Ozone catalyst; Spinel; Water resistance; In-situ Raman spectroscopy

Funding

  1. National Key Research and Development Program of China [2016YFC0207100]

Ask authors/readers for more resources

The study found that the synthesis of (Mn,Co)(3)O-4 catalyst can accelerate the decomposition of ozone, thereby improving efficiency. The synergy between Mn and Co in the reaction can promote the rate-determining steps.
At present, it is still a challenge to develop ozone decomposition catalysts with high efficiency and high humidity resistance. Herein, a series of spinel (Mn,Co)(3)O-4 catalysts are synthesized by coprecipitation method. Compared with the Mn3O4 and Co3O4 analogues, the obtained (Mn,Co)(3)O-4 has Co-CoIII(IIx) acceptor-defect and Mn-MnII(IIIx) donor-defect, which could contribute to the electron transfer between catalyst and ozone, accelerating ozone decomposition. Importantly, the in-situ Raman spectra of Mn3O4 shows the accumulation of peroxide species (O-2(2-)) inferring that the decomposition of O-2(2-) is the rate-determining step. On the other side, the reaction of the atomic oxygen with ozone would be rate-determining for Co3O4, as revealed by the low efficiency but no O-2(2-) signal. However, the synergy of Mn and Co in (Mn,Co)(3)O-4 accelerates both the rate-determining steps obtaining high efficiency, which provides a new idea to develop catalysts in ozone elimination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available