4.8 Article

Microwave assisted facile fabrication of dual Z-scheme g-C3N4/ZnFe2O4/Bi2S3 photocatalyst for peroxymonosulphate mediated degradation of 2,4,6-Trichlorophenol: The mechanistic insights

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 307, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121165

Keywords

Chlorophenols; Heterojunction composite; Dual Z-scheme; Catalytic degradation; Intermediate analysis

Funding

  1. Department of Science and Technology, Government of India [DST/TM/WTI/WIC/2K17/84 (G)]

Ask authors/readers for more resources

A ternary dual Z-scheme composite material was synthesized and its photocatalytic performance under visible light was explored. The catalyst showed effective removal of pollutants under specific conditions and demonstrated excellent performance in separating photogenerated charge carriers.
A ternary dual Z-scheme composite gCN/ZnFe2O4/Bi2S3 (ZFO/BS) was synthesized via a facile microwave assisted process and its photocatalytic potential was explored towards visible light driven removal of 2,4,6-triboundFe(2+/3+)|(surf.),Zn+/2+|(surf.)andBi(3+/4+)|(surf.) were effective towards charge carrier channelization and evolution cholorophenol (TCP) with subsequent peroxymonosulfate (PMS) activation. Surface of reactive species. Highest catalytic activity was experienced for the catalyst with 10 wt% Bi2S3 (ZFO/BS(10)) and 98.9% TCP was removed with 0.25 gL-1 catalyst and 1.0 gL-1 PMS, under 60 mins visible light irradiation (intensity: 80 W). Construction of dual Z-scheme heterojunction was studied using XPS and the mechanism of e(-)/h(+) separation was elucidated. In-depth radical scavenging and EPR analysis confirmed the coexistence and relative contributions of various reactive radicals towards degradation. Plausible TCP degradation pathway was designed based on intermediate analysis. This study elucidates the superiority of dual Z-scheme ternary heterojunction towards separation of photogenerated charge carriers and mineralization of various emerging contaminants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available