4.8 Article

Plasmon Ag/Na-doped defective graphite carbon nitride/NiFe layered double hydroxides Z-scheme heterojunctions toward optimized photothermal-photocatalytic-Fenton performance

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 304, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120969

Keywords

Photocatalysis; G-C3N4; Z-scheme heterojunction; Layered double hydroxide; Photothermal effect

Funding

  1. National Natural Science Foundation of China [21871078, 52172206]
  2. Natural Science Foundation of Heilongjiang Province [JQ2019B001]
  3. Natural Science Foundation of Shandong Province [ZR2021MB016]
  4. Heilongjiang Postdoctoral Startup Fund [LBH-Q14135]
  5. Hei-longjiang University Science Fund for Distinguished Young Scholars [JCL201802]
  6. Heilongjiang Touyan Innovation Team Program

Ask authors/readers for more resources

Three-dimensional flower-shaped plasmon Ag/Na-doped defective graphitic carbon nitride/NiFe layered double hydroxides (Ag/NaCNN/NiFe-LDH) Z-scheme heterojunction with enhanced utilization of sunlight and excellent photothermal effect is fabricated, showing promising applications in photocatalytic degradation of organic pollutants and hydrogen generation under visible light.
Three-dimensional flower-shaped plasmon Ag/Na-doped defective graphitic carbon nitride/NiFe layered double hydroxides (Ag/NaCNN/NiFe-LDH) Z-scheme heterojunction are fabricated by hydrothermal and calcination methods. The flower-shaped structure of NiFe-LDH enhances the multiple reflection and scattering of light, providing enough active sites to improve the utilization of sunlight. The introduction of Na-doped defects narrows the band gap of graphitic carbon nitride and accelerated the charge separation. Due to the surface plasmon resonance effect of Ag, Ag/NaCNN/NiFe-LDH shows excellent photothermal effect. The synergistic effect of photothermal-photocatalytic-Fenton reaction and Z-scheme heterojunction increased the hydrogen production of Ag/NaCNN/NiFe-LDH by 0.543 mmol h(-1), which was 10 times higher than that of NiFe-LDH. The degradation efficiency of p-nitrophenol and bisphenol A under visible light was 99%. This simple strategy and reasonable design provide new ideas for the construction of Z-scheme heterojunction photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available