4.8 Article

Phosphorus modified Ni-MOF-74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 307, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2022.121166

Keywords

Photocatalysis; S-scheme heterojunction; Ni-MOF-74; BiVO4 ; DFT; Hydrogen production

Funding

  1. Chinese National Natural Science Foundation [22062001]

Ask authors/readers for more resources

This research successfully prepared a composite catalyst Ni-MOF-74/BiVO4/P with excellent performance by modification, achieving the directional migration of photo-generated carriers and increasing the hydrogen production.
Regulating the directional migration of photo-generated carriers is an important strategy for realising highperformance photocatalysts. In this work, nano-particle Ni2P and peanut-like BiVO4 were grown on a rhombic structure Ni-MOF-74 substrate. A composite catalyst Ni-MOF-74/BiVO4/P with excellent performance was prepared by the high-temperature calcination method. Phosphorus modification produces Ni2P as an electron capture centre while maintaining the basic morphology of Ni-MOF-74, effectively avoiding the accumulation of nanoparticles. The Ni2P nanoparticles not only increase the number of active sites but also introduce negatively charged P that captures more protons for hydrogen evolution. After reasonable modification, the hydrogen production of the Ni-MOF-74/BiVO4/P reached 245.4 mu mol in 5 h, 23 times that of pure Ni-MOF-74. An S-scheme heterojunction between Ni-MOF-74 and BiVO4 achieves the directional transfer of carriers thereby inhibiting the recombination of electron-hole pairs. The band structure and density of states of Ni2P and BiVO4 were determined in density functional calculations. This work provides a new way for the regulation of the carrier behaviour in photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available