4.8 Article

Atomic Pd-promoted ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 304, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120994

Keywords

CO2 hydrogenation ; Methanol synthesis; ZnZrOx ; Palladium promoter; Atomic dispersion

Funding

  1. National University of Singapore Flagship Green Energy Programme [R-279-000-553-646]
  2. National Research Foundation (NRF) Singapore, under its NRF Fellowship [NRF-NRFF11-2019-0002]

Ask authors/readers for more resources

In this study, an atomic Pd-promoted ZnZrOx solid solution catalyst (Pd-ZnZrOx) was designed and synthesized, showing excellent activity and stability in the conversion of CO2 to methanol.
The development of efficient CO2 conversion catalysts is a long-lasting desire. Herein, we introduce an atomic Pd-promoted ZnZrOx solid solution catalyst (Pd-ZnZrOx), which shows markedly enhanced rate of methanol production compared to bare ZnZrOx, as well as excellent stability over 100 h on stream. Up to 0.8 at% (i.e. 0.6 wt%), Pd can be atomically dispersed in ZnZrOx, leading to more oxygen vacancies on the mixed oxide that foster methanol production. Kinetic analysis and in situ DRIFTS reveal that hydrogen activation is limited on ZnZrOx, but Pd doping facilitates H-2 dissociation as well as the consequent formation of HCOO*, thus boosting CO2 conversion to methanol. DFT analyses suggest that the presence of atomic Pd enables a more exothermic H2 dissociation, which increases the availability of surface H and facilitates CO2 hydrogenation on adjacent Zn sites, providing rationale on the high activity and robustness of Pd-ZnZrOx in CO2 hydrogenation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available