4.8 Article

Facile synthesis and application of CdS/Bi20TiO32/Bi4Ti3O12 ternary heterostructure: A synergistic multi-heterojunction photocatalyst for enhanced endosulfan degradation and hydrogen evolution reaction

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 303, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2021.120902

Keywords

Multi-heterojunctions; Bismuth titanate; CdS; Endosulfan; MTT assay; Hydrogen evolution

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India [01 (2947) /18/EMR-II]
  2. DST-FIST, New Delhi [SR/FTP/CS-I/2010/18]

Ask authors/readers for more resources

The manufacture of CdS/Bi20TiO32/Bi4Ti3O12 (CdSxBTC) composite photocatalysts with visible light response and synergistic electron migration is effective for water treatment and renewable energy generation. The composite materials showed enhanced photocatalytic activity for endosulfan degradation and water splitting, as well as non-cytotoxicity, with a proposed Type-I bridged coupled Z-scheme electron migration process for robust radical generation and photocatalytic activity.
Facile fabrication of visible light responsive multicomponent heterostructure photocatalysts with synergistic photoelectron migration is an effective approach with potential application in water remediation and renewable energy generation. In this study, a series of ternary multi-heterojunction CdS/Bi20TiO32/Bi4Ti3O12 (CdSxBTC) photocatalysts were prepared by hydrothermal deposition of CdS nanoparticles (15-25 nm) over one pot combustion synthesized Bi20TiO32/Bi4Ti3O12 (BTC) nanostructures. Comprehensive characterization of the ternary composites revealed enhanced optical absorption, high interfacial contact, fast electron channelization and a prolonged excited state life time. The CdSxBTC composite materials displayed enhanced photocatalytic activity for endosulfan degradation (k(app) value 6-12 times greater than pure semiconductors) and water splitting reaction (H-2 production rate 1890 mu molgb(-1) h(-1) and apparent conversion efficiency 19%). The cell viability -study disclosed non-cytotoxic nature of the treated endosulfan solution. A synergistic Type-I bridged coupled Z-scheme electron migration process accounted for robust radical generation ability (O-center dot(2)- and (OH)-O-center dot) and photocatalytic activity of the ternary composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available