4.7 Article

Aspergillus terreus and the Interplay with Amphotericin B: from Resistance to Tolerance?

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 66, Issue 4, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/aac.02274-21

Keywords

Aspergillus terreus; tolerance; amphotericin B; antifungal susceptibility testing; amphotericin B tolerance; aspergillosis; antifungal resistance; clinical breakpoint

Funding

  1. [W1253-B24]

Ask authors/readers for more resources

This study found that Aspergillus terreus isolates defined as susceptible to amphotericin B (AMB) therapy based on minimum inhibitory concentration (MIC) may comprise tolerant phenotypes, explaining the poor outcomes of AMB treatment.
Aspergillus terreus is an opportunistic causative agent of invasive aspergillosis and, in most cases, it is refractory to amphotericin B (AMB) therapy. Notably, AMB-susceptible Aspergillus terreus sensu stricto (s.s.) representatives exist which are also associated with poor clinical outcomes. Such findings may be attributable to drug tolerance, which is not detectable by antifungal susceptibility testing. Here, we tested in vitro antifungal susceptibility (AFST) and the fungicidal activity of AMB against 100 clinical isolates of A. terreus species complex in RPMI 1640 and antibiotic medium 3 (AM3). MICs ranged from 0.5 to 16 mu g/mL for RPMI 1640 and from 1 to >16 mg/L for AM3. AMB showed medium-dependent activity, with fungicidal effects only in antibiotic medium 3, not in RPMI 1640. Furthermore, the presence of AMB-tolerant phenotypes of A. terreus has been examined by assessing the minimum duration for killing 99% of the population (MDK99) and evaluating the data obtained in a Galleria mellonella infection model. A time-kill curve analysis revealed that A. terreus with AMB MICs of <= 1 mg/L (susceptible range) displayed AMB-tolerant phenotypes, exhibiting MDK99s at 18 and 36 h, respectively. Survival rates of infected G. mellonella highlighted that AMB was effective against susceptible A. terreus isolates, but not against tolerant or resistant isolates. Our analysis reveals that A. terreus isolates which are defined as susceptible based on MIC may comprise tolerant phenotypes, which may, in turn, explain the worse outcome of AMB therapy for phenotypically susceptible isolates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available