4.8 Article

On-Surface Debromination of 2,3-Bis(dibromomethyl)- and 2,3-Bis(bromomethyl)naphthalene: Dimerization or Polymerization?

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 61, Issue 30, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.202204123

Keywords

Conjugated Polymers; Dehalogenative Homocoupling; On-Surface Synthesis; Scanning Probe Microscopy

Funding

  1. National Natural Science Foundation of China [21790053, 51821002]
  2. National Major State Basic Research Development Program of China [2017YFA0205000, 2017YFA0205002]
  3. Collaborative Innovation Center of Suzhou Nano Science Technology
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
  5. 111 Project
  6. Projekt DEAL

Ask authors/readers for more resources

This study reveals the mechanism of on-surface dehalogenative homocoupling of benzylic bromides on Au(111), leading to hydrocarbon dimers or conjugated polymers. Insights into the reaction mechanism were obtained through a combination of experiments and computational calculations.
We describe the on-surface dehalogenative homocoupling of benzylic bromides, namely bis-bromomethyl- and bis-gem-(dibromomethyl) naphthalene as a potential route to either hydrocarbon dimers or conjugated polymers on Au(111). While bis-gem-(dibromomethyl) naphthalene affords different dimers with naphthocyclobutadiene as the key intermediate, bis-bromomethyl naphthalene furnishes a poly(o-naphthylene vinylidene) as a non-conjugated polymer which undergoes dehydrogenation toward its conjugated derivative poly(o-naphthylene vinylene) upon mild annealing. A combination of scanning tunneling microscopy, non-contact atomic force microscopy and density functional theory calculations provides deep insights into the prevailing mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available