4.8 Article

Selective CO2 Photoreduction to CH4 via Pdδ+-Assisted Hydrodeoxygenation over CeO2 Nanosheets

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Highly Durable and Fully Dispersed Cobalt Diatomic Site Catalysts for CO2 Photoreduction to CH4

Jinming Wang et al.

Summary: Dual-atom-site catalysts (DACs) have attracted attention in heterogeneous catalysis, and cobalt-based atom site catalysts with a Co-2-N coordination structure synthesized in this study exhibited superior catalytic performance for CO2 reduction, significantly outperforming cobalt-based single-atom-site catalysts. The excellent CO2 adsorption strength at dimeric Co active sites is the intrinsic reason for the superior activity of CoDACs.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Energy & Fuels

Highly Enhanced Full Solar Spectrum-Driven Photocatalytic CO2Reduction Performance in Cu2-xS/g-C3N4Composite: Efficient Charge Transfer and Mechanism Insight

Lisha Jiang et al.

Summary: This study presents an efficient Cu2-xS/g-C(3)N(4) composite photocatalyst for CO2 photoreduction, with superior full solar-spectrum-driven performance attributed to the efficient charge transfer between Cu2-xS and g-C(3)N(4). The composite showed significantly higher activities compared to pure Cu2-xS and g-C3N4, paving the way for the development of carbon nitride-based photocatalysts for efficient CO2 photoreduction with full-spectrum-responsive property.

SOLAR RRL (2021)

Article Chemistry, Multidisciplinary

Dual-Single-Atom Tailoring with Bifunctional Integration for High-Performance CO2 Photoreduction

Lei Cheng et al.

Summary: This study demonstrates the development of dual-single-atom catalysts supported on porous carbon nitride for effective photocatalytic CO2 reduction. The combination of cobalt and ruthenium facilitates dynamic charge transfer and selective CO2 surface-bound interaction, leading to high photocatalytic CO2 conversion efficiency without the need for sacrificial agents. The synergy between the unique properties of the two metals boosts the overall photocatalytic performance.

ADVANCED MATERIALS (2021)

Article Chemistry, Physical

CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol

Yang Lou et al.

Summary: CeO2-supported Pd dimers show high activity and selectivity in converting CO2 to ethanol, with a selectivity of 99.2% and a space-time yield of 45.6 g(ethanol) g(Pd)(-1) h(-1). The unique Pd2O4 configuration of Pd dimers enables the direct dissociation of CO2 to CO and C-C coupling, while appropriately inhibiting further C2+ coupling, leading to selective ethanol formation. The strategy of constructing atom-precision active sites opens new avenues for developing highly selective catalysts for CO2/CO hydrogenation reactions.

APPLIED CATALYSIS B-ENVIRONMENTAL (2021)

Article Chemistry, Physical

Elucidation of Active Sites for CH4 Catalytic Oxidation over Pd/CeO2 Via Tailoring Metal-Support Interactions

Shiyuan Chen et al.

Summary: The structure of PdOx nanoparticles loaded on CeO2 nanocrystals of different shapes was systematically studied using Cs-corrected HRTEM/STEM, XPS, and Raman spectroscopy. The active sites for methane catalytic oxidation were found to be morphology-dependent on the CeO2 supports, with Pd2+ species identified as the active centers. Additionally, the chemical states of Pd can be tuned through interactions with CeO2 in oxidizing/reducing atmospheres.

ACS CATALYSIS (2021)

Article Chemistry, Physical

Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4

Jian Li et al.

Summary: The study demonstrates a bioinspired photocatalyst with flexible dual-metal-site pairs that enhance CH4 selectivity and production rate. By stabilizing various C1 intermediates, it achieves a highly selective CO2-to-CH4 process.

NATURE CATALYSIS (2021)

Article Chemistry, Physical

Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation

Valery Muravev et al.

Summary: In this study, two Pd/CeO2 single-atom catalysts for low-temperature CO oxidation were compared, revealing the impact of preparation method on their stability. Detailed in situ characterization linked the stability of the Pd single atoms to the properties of the Pd-CeO2 interface. Understanding such metal-support interactions is crucial for the rational design of stable single-atom catalysts.

NATURE CATALYSIS (2021)

Review Chemistry, Physical

Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis

Lin Tian et al.

Summary: Electrochemical water splitting holds promise for producing high-density and green hydrogen, but the slow H2O dissociation process hinders industrial scale applications due to low H2O adsorption on catalyst surfaces. Efforts in exploring efficient approaches to fabricate electrocatalysts with appropriate H2O adsorption include defect engineering, interface engineering, and morphology design. Noble metal doping, particularly with metals like Ru, Rh, and Ir, plays a crucial role in optimizing the adsorption of reaction intermediates on catalyst surfaces, and has attracted significant research interest. This review highlights recent examples and mechanisms of noble metal doping in boosting water splitting electrocatalysis, along with challenges and future outlooks for practical applications.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Multidisciplinary

Promoting Formation of Oxygen Vacancies in Two-Dimensional Cobalt-Doped Ceria Nanosheets for Efficient Hydrogen Evolution

Shuaihu Jiang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Physical

Reticular Materials for Artificial Photoreduction of CO2

Ha L. Nguyen

ADVANCED ENERGY MATERIALS (2020)

Review Chemistry, Multidisciplinary

Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction

Xingchen Jiao et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Physical

Structure of the catalytically active copper-ceria interfacial perimeter

Aling Chen et al.

NATURE CATALYSIS (2019)

Article Chemistry, Multidisciplinary

Hierarchically nanostructured porous TiO2(B) with superior photocatalytic CO2 reduction activity

Tingmin Di et al.

SCIENCE CHINA-CHEMISTRY (2018)

Article Chemistry, Multidisciplinary

Selective CO Evolution from Photoreduction of CO2 on a Metal-Carbide-Based Composite Catalyst

Yu-Long Men et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2018)

Article Engineering, Environmental

Phosphate-Functionalized CeO2 Nanosheets for Efficient Catalytic Oxidation of Dichloromethane

Qiguang Dai et al.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2018)

Article Chemistry, Multidisciplinary

Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes

WooChul Jung et al.

ENERGY & ENVIRONMENTAL SCIENCE (2014)

Article Chemistry, Physical

Effects of surface area and oxygen vacancies on ceria in CO oxidation: Differences and relationships

Yi Liu et al.

JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL (2010)

Article Chemistry, Multidisciplinary

Elucidation of the electrochemical activation of water over Pd by first principles

JS Filhol et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2006)