4.6 Article

Cell immortalization facilitates prelamin A clearance by increasing both cell proliferation and autophagic flux

Journal

AGING-US
Volume 14, Issue 5, Pages 2047-2061

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/aging.203943

Keywords

aging; Zmpste24; autophagy; proliferation; immortalization

Funding

  1. Ministerio de Ciencia e Innovacion [SAF 2017-82133-R]
  2. Betabrain group [MOIR2-CMB2017/BMB-3684]
  3. Spanish Diabetes and Associated Metabolic Research Network (CIBERDEM)
  4. Instituto de Salud Carlos III, Spain

Ask authors/readers for more resources

Hutchinson-Gilford Progeria Syndrome is a rare disease characterized by accelerated aging and other pathological changes due to the accumulation of abnormal protein progerin in the nucleus. Recent studies have found that improving the proliferative capacity of cells can help reduce the toxicity of prelamin A protein and slow down the aging process.
Hutchinson-Gilford Progeria Syndrome is an ultrarare disease which is characterized by an accelerated senescence phenotype with deleterious consequences to people suffering this pathology. The production of an abnormal protein derived from lamin A, called progerin, presents a farnesylated domain, which is not eliminated by the causal mutation of the disease, and accumulates in the interior of the nucleus, provoking a disruption of nuclear membrane, chromatin organization and an altered gene expression. The mutation in these patients occurs in a single nucleotide change, which creates a de novo splicing site, producing a shorter version of the protein. Apart from this mutation, an alteration in the metalloproteinase Zmpste24, involved in the maturation of lamin A, causing a similar alteration than in progeria. However, in this case, patients accumulate a protein, called prelamin A, which generates similar alterations in the nucleus than progerin. The reduction of prelamin A protein levels facilitates the recovery of the phenotype in different mice models of the disease, reducing the aging process. Different strategies have been studied for eliminating this toxic protein. Here, we report that immortalization of primary cells derived from the Zmpste24 KO mice, facilitates prelamin A degradation by different mechanisms, being essential, the enhancing proliferative capacity that the immortalized cells present. Then, these data suggest that using different treatments for increasing proliferative capacity of these cells, potentially could have a beneficial effect, facilitating prelamin A toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available