4.8 Article

Production of Large-Area Nucleus-Free Single-Crystal Graphene-Mesh Metamaterials with Zigzag Edges

Journal

ADVANCED MATERIALS
Volume 34, Issue 48, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202201253

Keywords

air-ionization; graphene metamaterials; nucleus-free films; wafer-scale films; zigzag edges

Funding

  1. King Abdullah University of Science and Technology (KAUST) [OSR-2018-CRG7-3717]

Ask authors/readers for more resources

This study demonstrates a method for controlled production of wafer-scale high-quality nucleus-free graphene-mesh metamaterial films and evaluates the carrier mobility of the fabricated films. These findings contribute to the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.
In addition to conventional monolayer or bilayer graphene films, graphene-mesh metamaterials have attracted considerable research attention within the scientific community owing to their unique physical and optical properties. Currently, most graphene-mesh metamaterials are fabricated using common lithography techniques on exfoliated graphene flakes, which require the deposition and removal of chemicals during fabrication. This process may introduce contamination or doping, thereby limiting their production size and application in nanodevices. Herein, the controlled production of wafer-scale high-quality single-crystal nucleus-free graphene-mesh metamaterial films with zigzag edges is demonstrated. The C-13-isotopic labeling graphene-growth approach, large-area Raman mapping techniques, and a uniquely designed high-voltage localized-space air-ionization etching method are utilized to directly remove the graphene nuclei. Subsequently, a hydrogen-assisted anisotropic etching process is employed for transforming irregular edges into zigzag edges within the hexagonal-shaped holes, producing a large-scale single-crystal high-quality graphene-mesh metamaterial film on a Cu(111) substrate. The carrier mobilities of the fabricated field-effect transistors on the as-produced films are measured. The findings of this study enable the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available