4.8 Article

Ultrasensitive Airflow Sensors Based on Suspended Carbon Nanotube Networks

Journal

ADVANCED MATERIALS
Volume 34, Issue 18, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202107062

Keywords

airflow; carbon nanotubes; networks; sensors; suspended carbon nanotube networks

Funding

  1. National Natural Science Foundation of China [51872156, 22075163]
  2. National Key Research Program [2020YFC2201103, 2020YFA0210702]

Ask authors/readers for more resources

This article presents suspended carbon nanotube networks (SCNTNs) as high-performance airflow sensors, achieving a short response time, high sensitivity, small detection threshold, and wide detection range, surpassing most existing airflow sensors.
High-performance airflow sensors are in great demand in numerous fields but still face many challenges, such as slow response speed, low sensitivity, large detection threshold, and narrow sensing range. Carbon nanotubes (CNTs) exhibit many advantages in fabricating airflow sensors due to their nanoscale diameters, excellent mechanical and electrical properties, and so on. However, the intrinsic extraordinary properties of CNTs are not fully exhibited in previously reported CNT-based airflow sensors due to the mixed structures of macroscale CNT assemblies. Herein, this article presents suspended CNT networks (SCNTNs) as high-performance airflow sensors, which are self-assembled by ultralong CNTs and short CNTs in a one-step floating catalyst chemical vapor deposition process. The SCNTN-based airflow sensors achieved a record-breaking short response time of 0.021 s, a high sensitivity of 0.0124 s m(-1), a small detection threshold of 0.11 m s(-1), and a wide detection range of approximate to 0.11-5.51 m s(-1), superior to most of the state-of-the-art airflow sensors. To reveal the sensing mechanism, an acoustic response testing system and a mathematical model are developed. It is found that the airflow-caused intertube stress change resulted in the resistance variation of SCNTNs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available