4.8 Article

Asymmetric Substitution of End-Groups Triggers 16.34% Efficiency for All-Small-Molecule Organic Solar Cells

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

High Miscibility Compatible with Ordered Molecular Packing Enables an Excellent Efficiency of 16.2% in All-Small-Molecule Organic Solar Cells

Lili Zhang et al.

Summary: This study proposes a strategy to alleviate the conflict between small domain and ordered packing in ASM-OSCs by modulating molecular interactions to achieve good miscibility and packing simultaneously. The optimized morphology with multi-length-scale domains and highly ordered packing resulted in a record efficiency of 16.2% in ASM-OSCs, demonstrating the effectiveness of this approach in designing high-performance organic solar cells.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

17.1 %-Efficient Eco-Compatible Organic Solar Cells from a Dissymmetric 3D Network Acceptor

Hui Chen et al.

Summary: The performance of polymer solar cells processed by non-halogenated solvents was enhanced by designing and synthesizing a dissymmetric fused-ring acceptor BTIC-2Cl-gamma CF3, achieving a PCE of over 17% and showing significant advantages in storage and photo-stability, while extending the absorption peak to 852 nm.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Layer-by-Layer Processed Ternary Organic Photovoltaics with Efficiency over 18%

Lingling Zhan et al.

Summary: This study proposes and demonstrates a method to optimize the morphology of the active layer in organic photovoltaic devices by combining the layer-by-layer (LbL) procedure and the ternary strategy. By adding an asymmetric electron acceptor to the binary donor:acceptor host, a vertical phase distribution is formed, leading to improved efficiency in OPV devices.

ADVANCED MATERIALS (2021)

Article Nanoscience & Nanotechnology

Understanding the Effect of Sequential Deposition Processing for High-Efficient Organic Photovoltaics to Harvest Sunlight and Artificial Light

Lin Xie et al.

Summary: This study developed a novel asymmetric molecule and successfully enhanced the performance of high-efficient OPVs that can simultaneously harvest sunlight and artificial light in indoor environments using a sequential deposition bulk-heterojunction (SD-BHJ) method.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Chemistry, Multidisciplinary

Asymmetric Non-Fullerene Small-Molecule Acceptors toward High-Performance Organic Solar Cells

Dongxu Li et al.

Summary: In recent years, significant progress has been made in organic solar cells using asymmetric strategies to construct non-fullerene small molecule acceptors, achieving power conversion efficiencies of over 18%. Asymmetric acceptors not only impact molecular packing through changes in conformation but also achieve a balance between solubility and crystallinity.

ACS CENTRAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Systematic Merging of Nonfullerene Acceptor π-Extension and Tetrafluorination Strategies Affords Polymer Solar Cells with >16% Efficiency

Guoping Li et al.

Summary: The study found that combining the π-extension and halogenation strategies of end-capping groups (EG) in organic solar cells significantly impacts optical absorption, leading to an increase in power conversion efficiency (PCE).

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Physical

Solvent Annealing Enables 15.39% Efficiency All-Small-Molecule Solar Cells through Improved Molecule Interconnection and Reduced Non-Radiative Loss

Jinfeng Ge et al.

Summary: The study found that solvent annealing with solvents of good solubility is more beneficial for molecular migration and crystallization than thermal annealing, leading to improved efficiency and performance of solar cells. CS2 solvent is better at optimizing donor domain size, improving molecular interconnection, reducing trap states, and decreasing non-radiative recombination. CS2 solvent treatment also helps enhance overall solar cell performance by reducing non-radiative recombination and improving efficiency.

ADVANCED ENERGY MATERIALS (2021)

Review Chemistry, Physical

Recent progress of organic photovoltaics for indoor energy harvesting

Lin Xie et al.

Summary: The recent progress of indoor organic photovoltaics shows high power conversion efficiency and suitability for indoor energy harvesting. Due to the drawbacks of outdoor solar cells, indoor organic photovoltaic technology emerges as a reliable option for wireless power supply.

NANO ENERGY (2021)

Article Chemistry, Multidisciplinary

A Well-Mixed Phase Formed by Two Compatible Non-Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%

Yunhao Cai et al.

Summary: The ternary strategy of incorporating a third component into a binary blend has led to highly efficient organic solar cells with unprecedented power conversion efficiency values.

ADVANCED MATERIALS (2021)

Article Chemistry, Physical

Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency

Pengqing Bi et al.

Summary: Introducing HDO-4Cl increased the exciton diffusion length in the acceptor phase, reducing non-radiative charge recombination and improving photon utilization efficiency in PBDB-TF: eC9-based OPV cells. This led to achieving a high-efficiency OPV cell with outstanding power conversion efficiency, demonstrating the effectiveness of regulating exciton behaviors in reducing energy loss.

JOULE (2021)

Article Chemistry, Physical

Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology

Zhenyu Chen et al.

Summary: Incorporating highly ordered crystalline small molecules into host binary systems has been shown to significantly improve the photovoltaic performance of organic solar cells. By designing and synthesizing small molecular donors with similar chemical structures, it was found that the silicon-containing G19 exhibited a higher degree of order in the host system, resulting in improved power conversion efficiency.

JOULE (2021)

Article Chemistry, Multidisciplinary

15.8% efficiency binary all-small-molecule organic solar cells enabled by a selenophene substituted sematic liquid crystalline donor

Tongle Xu et al.

Summary: The study investigates the effect of selenophene substitution on the morphology and photovoltaic performance of liquid crystalline donors, and finds that the selenide donor exhibits higher intramolecular interaction and a more favored morphology, leading to outstanding power conversion efficiency up to 15.8%. This highlights the superiority of selenophene in constructing efficient small molecule liquid crystalline donors.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Physical

Foldable Semitransparent Organic Solar Cells for Photovoltaic and Photosynthesis

Wei Song et al.

ADVANCED ENERGY MATERIALS (2020)

Article Chemistry, Multidisciplinary

Asymmetric Electron Acceptors for High-Efficiency and Low-Energy-Loss Organic Photovoltaics

Shuixing Li et al.

ADVANCED MATERIALS (2020)

Article Multidisciplinary Sciences

18% Efficiency organic solar cells

Qishi Liu et al.

SCIENCE BULLETIN (2020)

Review Chemistry, Multidisciplinary

n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications

Qihui Yue et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Materials Science, Multidisciplinary

15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution

Jinzhao Qin et al.

SCIENCE CHINA-MATERIALS (2020)

Article Chemistry, Multidisciplinary

Moving Alkyl-Chain Branching Point Induced a Hierarchical Morphology for Efficient All-Small-Molecule Organic Solar Cells

Ruimin Zhou et al.

ADVANCED FUNCTIONAL MATERIALS (2020)

Article Chemistry, Multidisciplinary

15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive

Dingqin Hu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets

Shuixing Li et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Review Chemistry, Physical

Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells

Chao Li et al.

ADVANCED ENERGY MATERIALS (2019)

Review Chemistry, Multidisciplinary

All-Polymer Solar Cells: Recent Progress, Challenges, and Prospects

Gang Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Engineering, Electrical & Electronic

Flexible organic photovoltaics based on water-processed silver nanowire electrodes

Yanna Sun et al.

NATURE ELECTRONICS (2019)

Article Chemistry, Multidisciplinary

Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor

Shaoqing Zhang et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability

Wenchao Zhao et al.

ADVANCED MATERIALS (2016)

Article Chemistry, Multidisciplinary

A Series of Simple Oligomer-like Small Molecules Based on Oligothiophenes for Solution-Processed Solar Cells with High Efficiency

Bin Kan et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)