4.8 Article

Anion-Exchange Driven Phase Transition in CsPbI3 Nanowires for Fabricating Epitaxial Perovskite Heterojunctions

Journal

ADVANCED MATERIALS
Volume 34, Issue 19, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202109867

Keywords

anion exchange; heterojunctions; nanowires; perovskites; phase transition

Funding

  1. National Natural Science Foundation of China [11804042, 62004022, 12074054]

Ask authors/readers for more resources

This study investigates the ionic behavior in one-dimensional halide perovskites and finds that it is fundamentally different from three-dimensional systems. Anion exchange can drive phase transition and significantly lower the transition temperature in one-dimensional perovskite nanowires. The resulting heterojunction is epitaxial and its chemical composition can be controlled through postannealing.
Anion-exchange in halide perovskites provides a unique pathway of bandgap engineering for fabricating heterojunctions in low-cost photovoltaics and optoelectronics. However, it remains challenging to achieve robust and sharp perovskite heterojunctions, due to the spontaneous anion interdiffusion across the heterojunction in 3D perovskites. Here, it is shown that the anionic behavior in 1D perovskites is fundamentally different, that the anion exchange can readily drive an indirect-to-direct bandgap phase transition in CsPbI3 nanowires (NWs) and greatly lower the phase transition temperature. In addition, the heterojunction created by phase transition is epitaxial in nature, and its chemical composition can be precisely controlled upon postannealing. Further study of the phase transition dynamics reveals a threshold-dominating anion exchange mechanism in these 1D NWs rather than the gradient-dominating mechanism in 3D systems. The results provide important insights into the ionic behavior in halide perovskites, which is beneficial for applications in solar cells, light-emitting diodes (LEDs), and other semiconductor devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available