4.8 Article

Isogenous Asymmetric-Symmetric Acceptors Enable Efficient Ternary Organic Solar Cells with Thin and 300 nm Thick Active Layers Simultaneously

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 26, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202200807

Keywords

asymmetric structures; nonfullerene acceptors; organic solar cells; ternary strategy; thick films

Funding

  1. Natural Science Foundation of China [21971014, 61805009, 21672023]
  2. Thousand Youth Talents Plan of China
  3. BIT Teli Young Fellow Recruitment Program
  4. National Research Foundation of Korea [2016M1A2A2940911, 2020M3H4A3081814]

Ask authors/readers for more resources

By incorporating an asymmetric acceptor into binary blends, ternary organic solar cells (OSCs) were prepared. The good compatibility of two isogenous acceptors with similar chemical skeletons optimized the morphology and improved the photon absorption ability and energy level matching. The optimized ternary OSCs achieved high conversion efficiency and champion efficiency.
Integrating desirable light absorption, energy levels, and morphology in one matrix is always the aspiration to construct high-performance organic solar cells (OSCs). Herein, an asymmetric acceptor Y6-1O is incorporated into the binary blends of acceptor Y7-BO and donor PM6 to prepare ternary OSCs. Two isogenous asymmetric-symmetric acceptors with similar chemical skeletons tend to form alloy-like state in blends due to their good compatibility, which contributes to optimizing the morphology for efficient charge generation and extraction. The complementary absorption of two acceptors helps to improve the photon harvesting of ternary blends, and the higher lowest unoccupied molecular orbital (LUMO) energy level of Y6-1O offers the chance to uplift the mixed LUMO energy levels of acceptors. Combining the aforesaid benefits, the ternary OSCs with 10 wt% Y6-1O produce a top-ranked power conversion efficiency (PCE) of 18.11% with simultaneously elevated short-circuit current density, open-circuit voltage, and fill factor in comparison to Y7-BO-based binary devices. Furthermore, the optimized ternary OSCs with approximate to 300 nm active layers obtain a champion PCE of 16.61%, which is the highest value for thick-film devices reported so far. This work puts forward an avenue for further boosting the performance of OSCs with two isogenous acceptors but different asymmetric structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available