4.8 Article

Partial Sulfidation Strategy to NiFe-LDH@FeNi2S4 Heterostructure Enable High-Performance Water/Seawater Oxidation

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 29, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202200951

Keywords

NiFe-layered double hydroxide; partial sulfidation; heterostructures; oxygen evolution reaction; water; seawater oxidation

Funding

  1. Natural Science Foundation of Shandong Province, China [ZR2019MB062, ZR2014JL013]
  2. Key Research and Development Program of Shandong Province [2017GGX20143]
  3. Taishan Scholar Program of Shandong Province of China [ts201712045]
  4. Foundation of Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, QUST [SATM201603]
  5. foundation of Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education [201702]

Ask authors/readers for more resources

The construction of Ni2Fe-LDH/FeNi2S4 heterostructure through partial sulfidation is reported, which exhibits abundant active sites, rapid charge and mass transfer, and favorable adsorption energy, leading to improved alkaline water oxidation. In addition, the post-formed sulfate passivating layer on Ni2Fe-LDH/FeNi2S4/NF contributes to enhanced OER activity and durability in alkaline simulated seawater electrolyte.
The development of a high-performance electrocatalyst for oxygen evolution reaction (OER) is imperative but challenging. Here, a partial sulfidation route to construct Ni2Fe-LDH/FeNi2S4 heterostructure on nickel foam (Ni2Fe-LDH/FeNi2S4/NF) by adjusting the hydrothermal duration is reported. The heterostructures afford abundant hydroxide/sulfide interfaces that offer plentiful active sites, rapid charge and mass transfer, favorable adsorption energy to oxygenated species (OH- and OOH) evidenced by the density functional theory calculations, which synergistically boost the alkaline water oxidation. In the 1.0 m KOH solution, Ni2Fe-LDH/FeNi2S4/NF exhibits an excellent OER catalytic activity with a much smaller overpotential (240 mV) to reach the current density of 100 mA cm(-2) than single-phase Ni2Fe-LDH/NF (279 mV) or FeNi2S4/NF (271 mV). More impressively, 2000 cycles of cyclic voltammetry scan for water oxidation results in the formation of a sulfate layer over the catalyst. The corresponding post-catalyst demonstrates better OER activity and durability than the initial one in the alkaline simulated seawater electrolyte. The post-Ni2Fe-LDH/FeNi2S4/NF delivers smaller overpotential (250 mV) at 100 mA cm(-2) and longer stability time than the original form (260 mV). The post-formed sulfate passivating layer is responsible for the outstanding corrosion resistance of the salty-water oxidation anode since it can effectively repel chloride.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available