4.8 Article

Effect of Eliminating Water in Prussian Blue Cathode for Sodium-Ion Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 32, Issue 25, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202111727

Keywords

phase transitions; Prussian blue; sodium; synchrotron X-ray diffraction

Funding

  1. National Natural Science Foundation of China [51971124, 52171217]
  2. Australian Renewable Energy Agency (ARENA) Project [G00849]
  3. China Scholarship Council [201606370024]

Ask authors/readers for more resources

Prussian blue analogs (PBAs) are promising cathode materials for sodium-ion batteries due to their low cost, comparable energy density and long cycle life. However, the crystal water in PBAs can have significant side effects on battery performance. Researchers have developed a heat-treatment method to remove water from PBAs, improving their high temperature storage performance.
Prussian blue analogs (PBAs) are promising cathode materials for sodium-ion batteries (SIBs) due to their low-cost, similar energy density comparable with that of LiFePO4 in lithium-ion batteries, and long cycle life. Nevertheless, crystal water (approximate to 10 wt%) in PBAs from aqueous synthesis environments can bring significant side effects in real SIBs, especially for calendar life and high temperature storage performance. Therefore, it is of great importance to eliminate crystal water in PBAs for future commercial applications. Herein, a facile heat-treatment method is reported in order to remove water from Fe-based PBAs. Although the heat-treated sample can be easily rehydrated in air, it still exhibits a stable cycling performance over 2000 times under controlled charge cut-off voltage. In situ synchrotron high-temperature powder X-ray diffraction demonstrates that the as-prepared sample is maintained at a new trigonal phase after dehydration. Moreover, the redox reaction of low-spin Fe2+/Fe3+ is activated and the high-temperature storage performance of as-prepared sample is significantly improved after removal of water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available