4.8 Article

Fluorescence and Colorimetric Dual-Mode Ratiometric Sensor Based on Zr-Tetraphenylporphyrin Tetrasulfonic Acid Hydrate Metal-Organic Frameworks for Visual Detection of Copper Ions

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 14, Issue 11, Pages 13848-13857

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c23199

Keywords

red fluorescent Zr-TPPS MOFs; dual-mode; ratiometric fluorescence sensor; ratiometric colorimetric sensor; Cu2+ detection

Funding

  1. Chinese Universities Scientific Fund [2452021123]

Ask authors/readers for more resources

A facile, effective, and highly selective Cu2+ probe was constructed using ZTM metal-organic framework for detection. The introduction of FITC and design of a ratiometric fluorescent probe, as well as the development of a pronounced colorimetric sensor, were highlighted in the study.
As a special heavy metal ion, copper ions (Cu2+) play an indispensable role in the fields of environmental protection and safety. Their excessive intake not only easily leads to diseases but also affects human health. Therefore, it is particularly important to construct a facile, effective, and highly selective Cu2+ probe. Herein, a novel Zr-tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) metal-organic framework (ZTM) was fabricated using TPPS as the ligand and exhibited strong red fluorescence with a high quantum yield of 12.22%. In addition, we designed a ratiometric fluorescent probe by introducing green fluorescein isothiocyanate (FITC), which was not subject to environmental interference and had high accuracy. When exposed to different amounts of Cu2+, the fluorescence emission at 667 nm from ZTMs is remarkably quenched, while that at 515 nm from FITC is enhanced, accompanied by a change in the solutions' fluorescence color from red to green under a UV lamp. Besides, the ZTMs solutions display an excellent ratiometric colorimetric response for Cu2+ and produce an obvious color change (from green to colorless) that is visible to the naked eye. The fabricated ZTMs@FITC fluorescent probe exhibits distinguished performance for Cu2+ detection with linear ranges of 0.1 to 5 mu M and 5 to 50 mu M, as well as a low detection limit of 5.61 nM. Moreover, a colorimetric sensor based on ZTMs exhibits a good linear range from 0.1 to 20 mu M for Cu2+ with the detection limit of 4.96 nM. Furthermore, the dual-signal ratiometric sensor has significant specificity for Cu2+ and is successfully applied for monitoring Cu2+ in water samples, which proves its practical application value in the environment and biological systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available