4.8 Review

Entangled Photon Spectroscopy

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 55, Issue 7, Pages 991-1003

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.1c00687

Keywords

-

Funding

  1. National Science Foundation [CHE-1836374, CHE-1607949, CHE-2004076]
  2. Air Force Office of Scientific Research [FA9550-20-1-0380]

Ask authors/readers for more resources

The enhanced interest in quantum-related phenomena has opened up new opportunities for chemists to detect and analyze chemical processes. The use of nonclassical states of light and entangled states of light has been studied for spectroscopy, microscopy, and interferometry, providing potential benefits for the chemical community.
CONSPECTUS: The enhanced interest in quantum-related phenomena has provided new opportunities for chemists to push the limits of detection and analysis of chemical processes. As some have called this the second quantum revolution, a time has come to apply the rules learned from previous research in quantum phenomena toward new methods and technologies important to chemists. While there has been great interest recently in quantum information science (QIS), the quest to understand how nonclassical states of light interact with matter has been ongoing for more than two decades. Our entry into this field started around this time with the use of materials to produce nonclassical states of light. Here, the process of multiphoton absorption led to photonnumber squeezed states of light, where the photon statistics are sub-Poissonian. In addition to the great interest in generating squeezed states of light, there was also interest in the formation of entangled states of light. While much of the effort is still in foundational physics, there are numerous new avenues as to how quantum entanglement can be applied to spectroscopy, imaging, and sensing. These opportunities could have a large impact on the chemical community for a broad spectrum of applications. In this Account, we discuss the use of entangled (or quantum) light for spectroscopy as well as applications in microscopy and interferometry. The potential benefits of the use of quantum light are discussed in detail. From the first experiments in porphyrin dendrimer systems by Dr. Dong-Ik Lee in our group to the measurements of the entangled two photon absorption cross sections of biological systems such as flavoproteins, the usefulness of entangled light for spectroscopy has been illustrated. These early measurements led the way to more advanced measurements of the unique characteristics of both entangled light and the entangled photon absorption cross-section, which provides new control knobs for manipulating excited states in molecules. The first reports of fluorescence-induced entangled processes were in organic chromophores where the entangled photon cross-section was measured. These results would later have widespread impact in applications such as entangled two-photon microscopy. From our design, construction and implementation of a quantum entangled photon excited microscope, important imaging capabilities were achieved at an unprecedented low excitation intensity of 10(7) photons/s, which is 6 orders of magnitude lower than the excitation level for the classical two-photon image. New reports have also illustrated an advantage of nonclassical light in Raman imaging as well. From a standpoint of more precise measurements, the use of entangled photons in quantum interferometry may offer new opportunities for chemistry research. Experiments that combine molecular spectroscopy and quantum interferometry, by utilizing the correlations of entangled photons in a Hong-Ou-Mandel (HOM) interferometer, have been carried out. The initial experiment showed that the HOM signal is sensitive to the presence of a resonant organic sample placed in one arm of the interferometer. In addition, parameters such as the dephasing time have been obtained with the opportunity for even more advanced phenomenology in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available