4.8 Review

Single-Molecule Mechanochemical Sensing

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 55, Issue 9, Pages 1214-1225

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.accounts.1c00770

Keywords

-

Funding

  1. NIH [R01CA236350, NSF 1904921]

Ask authors/readers for more resources

Single-molecule mechanochemical sensing is a novel biosensing technique that uses mechanical force as a signal transduction mechanism. By converting the chemical binding of analyte molecules to mechanical signals, this technique allows for sensitive sensing at the single molecule level. Compared to traditional ensemble sensing methods, single-molecule mechanochemical sensing offers higher material efficiency and temporal resolution.
Single-molecule mechanochemical sensing (SMMS) is a novel biosensing technique using mechanical force as a signal transduction mechanism. In the mechanochemical sensing, the chemical binding of an analyte molecule to a sensing template is converted to mechanical signals, such as tensile force, of the template. Since mechanical force can be conveniently monitored by single-molecule tools, such as optical tweezers, magnetic tweezers, or Atomic Force Microscopy, mechanochemical sensing is often carried out at the single molecule level. In traditional format of ensemble sensing, sensitivity can be achieved via chemical or electrical amplifications, which are materials intensive and time-consuming. To address these problems, in 2011, we used the principle of mechanochemical coupling in a single molecular template to detect single nucleotide polymorphism (SNP) in DNA fragments. The single-molecule sensitivity in such SMMS strategy allows to removing complex amplification steps, drastically conserving materials and increasing temporal resolution in the sensing. By placing many probing units throughout a single-molecule sensing template, SMMS can have orders of magnitude better efficiency in the materials usage (i.e., high Atom Economy) with respect to the ensemble biosensing. The SMMS sensing probes also enable topochemical arrangement of different sensing units. By placing these units in a spatiotemporally addressable fashion, single-molecule topochemical sensors have been demonstrated in our lab to detect an expandable set of microRNA targets. Because of the stochastic behavior of single-molecule binding, however, it is challenging for the SMMS to accurately report analyte concentrations in a fixed time window. While multivariate analysis has been shown to rectify background noise due to stochastic nature of single-molecule probes, a template containing an array of sensing units has shown ensemble average behaviors to address the same problem. In this so-called ensemble single-molecule sensing, collective mechanical transitions of many sensing units occur in the SMMS sensing probes, which allows accurate quantification of analytes. For the SMMS to function as a viable sensing approach readily adopted by biosensing communities, the future of the SMMS technique relies on the reduction in the complexity and cost of instrumentation to report mechanical signals. In this account, we first explain the mechanism and main features of the SMMS. We then specify basic elements employed in SMMS. Using DNA as an exemplary SMMS template, we further summarize different types of SMMS which present multiplexing capability and increased throughput. Finally, recent efforts to develop simple and affordable high throughput methods for force generation and measurement are discussed in this Account for potential usage in the mechanochemical sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available