4.7 Article

Operational regimes in a closed loop pulsating heat pipe

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 102, Issue -, Pages 78-88

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2015.11.006

Keywords

Closed loop pulsating heat pipes (CLPHP); Two-phase flow pattern; Two-phase flow dynamics; Thermal resistance; Dominant boiling mechanism; Latent vs. sensible heat exchange

Funding

  1. ABB Switzerland Ltd.
  2. Swiss Commission for Technology and Innovation (CTI) [12962]

Ask authors/readers for more resources

Synchronized thermal and visual investigation was carried out on a single-turn channel CLPHP using R245fa as the worldng fluid. The tests were carried out at filling ratios from 10 to 90% and heat inputs from 2 to 60 W for vertical and inclined orientations. A systematic analysis of the flow patterns, their transitions and thermal resistance measurements suggests a strong coupling between the two-phase flow pattern and the system thermal behavior. The effect of the flow dynamics on the system thermal performance was also qualitatively and quantitatively assessed and presented as 'operational maps'. Local time-averaged heat transfer coefficients were extracted by applying a-state-of-the-art mechanistic model for the evaporation of elongated bubbles in the CLPHP microchannels using the flow measurements. The obtained local and averaged results were then used to qualitatively assess and account for the heat transfer characteristics in the CLPHP evaporator U-turn for the different flow patterns. Based on this analysis, thin film evaporation was found to be the dominant thermal mechanism, while heat transfer into the oscillating liquid slug and localized nucleate boiling were of secondary importance. (C) 2015 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available